877 research outputs found

    Muon and Tau Neutrinos Spectra from Solar Flares

    Full text link
    Solar neutrino flares and mixing are considered. Most power-full solar flare as the ones occurred on 23th February 1956, September 29th 1989, 28th October and on 2nd-4th November 2003 are sources of cosmic rays, X, gamma and neutrino bursts. These flares took place both on front or in the edge and in the hidden solar disk. The observed and estimated total flare energy should be a source of a prompt secondary neutrino burst originated, by proton-proton-pion production on the sun itself; a more delayed and spread neutrino flux signal arise by the solar charged flare particles reaching the terrestrial atmosphere. Our first estimates of neutrino signals in largest underground detectors hint for few events in correlation with, gamma,radio onser. Our approximated spectra for muons and taus from these rare solar eruption are shown over the most common background. The muon and tau signature is very peculiar and characteristic over electron and anti-electron neutrino fluxes. The rise of muon neutrinos will be detectable above the minimal muon threshold of 113 MeV. The rarest tau appearence will be possible only for hardest solar neutrino energies above 3.471 GeVComment: 14 pages, 4 figures, Vulcano Conference 200

    Light Nuclei solving Auger puzzles. The Cen-A imprint

    Full text link
    Ultra High Energy Cosmic Rays (UHECR) map at 60 EeV have been found recently by AUGER group spreading anisotropy signatures in the sky. The result have been interpreted as a manifestation of AGN sources ejecting protons at GZK edges mostly from Super-galactic Plane. The result is surprising due to the absence of much nearer Virgo cluster. Moreover, early GZK cut off in the spectra may be better reconcile with light nuclei (than with protons). In addition a large group (nearly a dozen) of events cluster suspiciously along Cen-A. Finally, proton UHECR composition nature is in sharp disagreement with earlier AUGER claim of a heavy nuclei dominance at 40 EeV. Therefore we interpret here the signals as mostly UHECR light nuclei (He, Be, B, C, O), very possibly mostly the lightest (He,Be) ones, ejected from nearest AGN Cen-A, UHECR smeared by galactic magnetic fields, whose random vertical bending is overlapping with super-galactic arm. The eventual AUGER misunderstanding took place because of such a rare coincidence between the Super Galactic Plane (arm) and the smeared (randomized) signals from Cen-A, bent orthogonally to the Galactic fields. Our derivation verify the consistence of the random smearing angles for He, Be and B, C, O, in reasonable agreement with the AUGER main group events around Cen-A. Only few other rare events are spread elsewhere. The most collimated from Cen-A are the lightest. The most spread the heavier. Consequently Cen-A is the best candidate UHE neutrino tau observable by HEAT and AMIGA as enhanced AUGER array at tens-hundred PeV energy. This model maybe soon tested by new events clustering around the Cen-A and by composition imprint study.Comment: 4 pages, 5 figures

    Ultrahigh energy neutrino scattering onto relic light neutrinos in galactic halo as a possible source of highest energy extragalactic cosmic rays

    Get PDF
    The diffuse relic neutrinos with light mass are transparent to Ultrahigh energy (UHE) neutrinos at thousands EeV, born by photoproduction of pions by UHE protons on relic 2.73 K BBR radiation and originated in AGNs at cosmic distances. However these UHE ν\nus may interact with those (mainly heaviest νμr\nu_{\mu_r}, ντr\nu_{\tau_r} and respective antineutrinos) clustered into HDM galactic halos. UHE photons or protons, secondaries of ννr\nu\nu_r scattering, might be the final observed signature of such high-energy chain reactions and may be responsible of the highest extragalactic cosmic-ray (CR) events. The chain-reactions conversion efficiency, ramifications and energetics are considered for the October 1991 CR event at 320 EeV observed by the Fly's Eye detector in Utah. These quantities seem compatible with the distance, direction and power (observed at MeV gamma energies) of the Seyfert galaxy MCG 8-11-11. The ννr\nu\nu_r interaction probability is favoured by at least three order of magnitude with respect to a direct ν\nu scattering onto the Earth atmosphere. Therefore, it may better explain the extragalactic origin of the puzzling 320 EeV event, while offering indirect evidence of a hot dark galactic halo of light (i.e., mνm_\nu\sim tens eV) neutrinos, probably of tau flavour.Comment: 25 pages, 1 figure minor corrections, updated references. In press in AP

    Possible Effects of the Existence of the 4th Generation Neutrino

    Get PDF
    The 4th generation of fermions predicted by the phenomenology of heterotic string models can possess new strictly conserved charge, which leads, in particular, to the hypothesis of the existence of the 4th generation massive stable neutrino. The compatibility of this hypothesis with the results of underground experiment DAMA searching for weakly interactive particles of dark matter and with the EGRET measurements of galactic gamma--background at energies above 1 GeV fixes the possible mass of the 4th neutrino at the value about 50 GeV. The possibility to test the hypothesis in accelerator experiments is considered. Positron signal from the annihilation of relic massive neutrinos in the galactic halo is calculated and is shown to be accessible for planned cosmic ray experiments.Comment: 10 pages, 4 PostScript figure, Latex2

    GRBs-SN and SGR-X-Pulsar as blazing Jets

    Full text link
    Old and recent puzzles of GRBs and SGRs find a solution with a model based on the fast blazing of very collimated thin gamma Jets. Damped oscillating afterglows in GRB030329 find a natural explanation assuming a very thin Jet whose persistent activity and different angle of view maybe combined at once with the Supernovae power and the apparent huge GRBs output. The same thin beaming offer an understanding of the apparent SGR-Pulsar power connection. A thin collimated precessing Gamma Jet model for both GRBs and SGRs, at their different scaled luminosity (10^{44} - 10^{38}erg s^-1), explains the existence of few identical energy spectra and time evolution of these sources leading to a unified model. Their similarity with the huge precessing Jets in AGN, QSRs and Radio-Galaxies inspires this smaller scale SGR-GRB model. The spinning-precessing Jet explains the rare mysterious X-Ray precursors in GRBs and SGRs events. Any large Gamma Jet off-axis beaming to the observer might lead to the X-Flash events without any GRB signals, as the most recent XRF030723. Its possible re-brightening would confirm the evidence of the variable pointing of the jet in or off line towards the observer. Indeed a multi-precessing Jet at peak activity in all bands may explain the puzzling X or optical re-brightening bumps found in the GRB 021004, GRB030329 and the SGR 1900+ 14 on 27 August 1998 and once again on the 18 April 2001. Rarest micro-quasars neutron star in our galaxy as SS433, and Herbig Haro objects and Cir-X-1 describe these thin precessing Jet imprints in the spectacular shapes of their relic nebulae.Comment: 10 pages, 10 figures, Vulcano Conference May 200

    Signature of relic heavy stable neutrinos in underground experiments

    Get PDF
    Considering heavy stable neutrinos of 4th generation we calculate the relic density of such neutrinos in the Universe. Taking into account the condensation of heavy neutrinos in the Galaxy and applying the results of calculations to experimental data from underground experiments on search for WIMPs in elastic neutral current scattering on nuclei we found an exclusion region of neutrino mass 60 GeV < m < 290 GeV. The bounds obtained from present underground experiments while confirming the previous bounds derived from analysis of cosmic ray spectra are more relible ones. We discuss also the first indication of elastic scattering induced by WIMP in DAMA experiment finding a very narrow window of neutrino mass 45 GeV < m < 50 GeV compatible with the possible signal rate in the detector.Comment: 12 pages, 3 figure

    Thermal effects on the absorption of ultra-high energy neutrinos by the cosmic neutrino background

    Full text link
    We use the formalism of finite-temperature field theory to study the interactions of ultra-high energy (UHE) cosmic neutrinos with the background of relic neutrinos and to derive general expressions for the UHE neutrino transmission probability. This approach allows us to take into account the thermal effects introduced by the momentum distribution of the relic neutrinos. We compare our results with the approximate expressions existing in the literature and discuss the influence of thermal effects on the absorption dips in the context of favoured neutrino mass schemes, as well as in the case of clustered relic neutrinos.Comment: 3 pages, 2 figures. Prepared for the Proceedings of the 9th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2005), Zaragoza (Spain), September 10-14, 200

    SIMBIOS Project 1998 Annual Report

    Get PDF
    The purpose of this series of technical reports is to provide current documentation of the Sensor Intercomparison and Merger for Biological and Interdisciplinary Ocean Studies (SIMBIOS) Project activities, NASA Research Announcement (NRA) research status, satellite data processing, data product validation and field calibration. This documentation is necessary to ensure that critical information is related to the scientific community and NASA management. This critical information includes the technical difficulties and challenges of combining ocean color data from an array of independent satellite systems to form consistent and accurate global bio-optical time series products. This technical report is not meant to substitute for scientific literature. Instead, it will provide a ready and responsive vehicle for the multitude of technical reports issues by an operational project

    Evidence for a connection between the gamma-ray and the highest energy cosmic-ray emissions by BL Lacertae objects

    Get PDF
    A set of potentially gamma-ray--loud BL Lac objects is selected by intersecting the EGRET and BL Lac catalogs. Of the resulting 14 objects, eight are found to correlate with arrival directions of ultra--high-energy cosmic rays (UHECRs), with significance of the order of 5 sigma. This suggests that gamma-ray emission can be used as a distinctive feature of those BL Lac objects that are capable of producing UHECR.Comment: 11 pages, 1 figure, version published in APJ Letter

    Lightest Nuclei in UHECR versus Tau Neutrino Astronomy

    Full text link
    UHECR may be either nucleons or nuclei; in the latter case the Lightest Nuclei, as He, Li, Be, explains at best the absence of Virgo signals and the crowding of events around Cen-A bent by galactic magnetic fields. This model fit the observed nuclear mass composition discovered in AUGER. However UHECR nucleons above GZK produce EeV neutrinos while Heavy Nuclei, as Fe UHECR do not produce much. UHECR He nuclei at few tens EeV suffer nuclear fragmentation (producing low energetic neutrino at tens PeVs) but it suffer anyway photo-pion GZK suppression (leading to EeV neutrinos) once above one-few 10^{20} eV. Both these cosmogenic UHE secondary neutrinos signals may influence usual predicted GZK Tau Neutrino Astronomy in significant and detectable way; the role of resonant antineutrino electron-electron leading to Tau air-shower may also rise.Comment: 5 pages, 5 figures, CRIS 200
    corecore