5,284 research outputs found

    Trace anomalies and chiral Ward identities

    Full text link
    In a simple abelian spinor field theory, the canonical trace identities for certain axial-vector and axial-scalar operators are reexamined in dimensional regularization, some disagreements with previous results are found and an interesting new phenomenon is observed and briefly discussed.Comment: 4 pages, no figure, typos remove

    Scale-free networks with an exponent less than two

    Full text link
    We study scale free simple graphs with an exponent of the degree distribution γ\gamma less than two. Generically one expects such extremely skewed networks -- which occur very frequently in systems of virtually or logically connected units -- to have different properties than those of scale free networks with γ>2\gamma>2: The number of links grows faster than the number of nodes and they naturally posses the small world property, because the diameter increases by the logarithm of the size of the network and the clustering coefficient is finite. We discuss a simple prototype model of such networks, inspired by real world phenomena, which exhibits these properties and allows for a detailed analytical investigation

    Warped Phenomenology

    Full text link
    We explore the phenomenology associated with the recently proposed localized gravity model of Randall and Sundrum where gravity propagates in a 5-dimensional non-factorizable geometry and generates the 4-dimensional weak-Planck scale hierarchy by an exponential function of the compactification radius, called a warp factor. The Kaluza-Klein tower of gravitons which emerge in this scenario have strikingly different properties than in the factorizable case with large extra dimensions. We derive the form of the graviton tower interactions with the Standard Model fields and examine their direct production in Drell-Yan and dijet events at the Tevatron and LHC as well as the KK spectrum line-shape at high-energy linear \epem colliders. In the case where the first KK excitation is observed, we outline the procedure to uniquely determine the parameters of this scenario. We also investigate the effect of KK tower exchanges in contact interaction searches. We find that present experiments can place meaningful constraints on the parameters of this model.Comment: 14 pages, LaTex, 3 fig

    TeV-scale electron Compton scattering in the Randall-Sundrum scenario

    Get PDF
    The spin-2 graviton excitations in the Randall-Sundrum gravity model provides a t-channel contribution to electron Compton scattering which competes favourably with the standard QED contributions. The phenomenological implications of these contributions to the unpolarized and polarized cross-sections are evaluated.Comment: 11 pages, 5 figure

    Amplitudes and Spinor-Helicity in Six Dimensions

    Get PDF
    The spinor-helicity formalism has become an invaluable tool for understanding the S-matrix of massless particles in four dimensions. In this paper we construct a spinor-helicity formalism in six dimensions, and apply it to derive compact expressions for the three, four and five point tree amplitudes of Yang-Mills theory. Using the KLT relations, it is a straightforward process to obtain amplitudes in linearized gravity from these Yang-Mills amplitudes; we demonstrate this by writing down the gravitational three and four point amplitudes. Because there is no conserved helicity in six dimensions, these amplitudes describe the scattering of all possible polarization states (as well as Kaluza-Klein excitations) in four dimensions upon dimensional reduction. We also briefly discuss a convenient formulation of the BCFW recursion relations in higher dimensions.Comment: 26 pages, 2 figures. Minor improvements of the discussio

    High Energy Photon-Photon Collisions at a Linear Collider

    Full text link
    High intensity back-scattered laser beams will allow the efficient conversion of a substantial fraction of the incident lepton energy into high energy photons, thus significantly extending the physics capabilities of an electron-electron or electron-positron linear collider. The annihilation of two photons produces C=+ final states in virtually all angular momentum states. The annihilation of polarized photons into the Higgs boson determines its fundamental two-photon coupling as well as determining its parity. Other novel two-photon processes include the two-photon production of charged lepton pairs, vector boson pairs, as well as supersymmetric squark and slepton pairs and Higgstrahlung. The one-loop box diagram leads to the production of pairs of neutral particles. High energy photon-photon collisions can also provide a remarkably background-free laboratory for studying possibly anomalous WWW W collisions and annihilation. In the case of QCD, each photon can materialize as a quark anti-quark pair which interact via multiple gluon exchange. The diffractive channels in photon-photon collisions allow a novel look at the QCD pomeron and odderon. Odderon exchange can be identified by looking at the heavy quark asymmetry. In the case of electron-photon collisions, one can measure the photon structure functions and its various components. Exclusive hadron production processes in photon-photon collisions test QCD at the amplitude level and measure the hadron distribution amplitudes which control exclusive semi-leptonic and two-body hadronic B-decays.Comment: Invited talk, presented at the 5th International Workshop On Electron-Electron Interactions At TeV Energies, Santa Cruz, California, 12-14 December 200

    Preparación de nuevas nanoemulsiones a partir de aceite rico en omega-3

    Get PDF
    This work aimed to produce stabilized omega-3-rich oil in a water nanoemulsion using a high-pressure homogenizer (HPH). Studies were carried out on the effects of the type of the emulsifier and its con­centration, HPH conditions (pressure and number of passes inside the homogenization chamber) as well as continuous phase viscosity on the polydispersity index (PDI) and mean droplet size of the nanoemulsion were carried out. The impact of rosemary extract on the oxidative stability of the emulsion was also monitored. Results showed that small molecular weight emulsifiers gave small droplet size and vice versa. In addition, the results revealed that a parallel decrease in mean droplet diameter was observed with increases in emulsifier concentra­tion, homogenization cycles (passes) and homogenization pressure. Furthermore, when the viscosity of the aque­ous phase increased, a slight non-significant and irregular fluctuation in the droplet size was detected. The results demonstrated that rosemary extract enhanced the oxidative stability of this nanoemulsion. Our results could help in formulating stabilized omega-3-enriched nanoemulsions that could be applied in different food stuffs.Este trabajo tuvo como objetivo producir nanoemulsiones de aceite rico en omega-3 estabilizado en agua usando un homogeneizador de alta presión (HPH). Estudiando los efectos del tipo de emulsionante y su concentración, se llevaron a cabo las condiciones de HPH (presión y número de pasadas dentro de la cámara de homogeneización), así como la viscosidad de fase continua en el índice de polidispersidad (PDI) y el tamaño medio de gota de la nanoemulsión. También se siguió el impacto de la adición de extracto de romero sobre la estabilidad oxidativa de la emulsión. Los resultados mostraron que los emulsionantes de peso molecular pequeño dieron un tamaño de gota pequeño y viceversa. Los resultados también revelaron que hay una disminución paralela en el diámetro medio de las gotitas con el aumento de la concentración de emulsionante, los ciclos de homogeneización (pases) y la presión de homogeneización. Además, cuando aumentó la viscosidad de la fase acuosa, se observó una ligera fluctua­ción no significativa e irregular en el tamaño de la gota. Además, los resultados demostraron que el extracto de romero mejoró la estabilidad oxidativa de esta nanoemulsión. Nuestros resultados podrían ayudar a formular nanoemulsiones enriquecidas con omega-3 estabilizadas que podrían aplicarse en diferentes alimentos

    Pseudo-axions in Little Higgs models

    Full text link
    Little Higgs models have an enlarged global symmetry which makes the Higgs boson a pseudo-Goldstone boson. This symmetry typically contains spontaneously broken U(1) subgroups which provide light electroweak-singlet pseudoscalars. Unless such particles are absorbed as the longitudinal component of Z′Z' states, they appear as pseudoscalars in the physical spectrum at the electroweak scale. We outline their significant impact on Little Higgs phenomenology and analyze a few possible signatures at the LHC and other future colliders in detail. In particular, their presence significantly affects the physics of the new heavy quark states predicted in Little Higgs models, and inclusive production at LHC may yield impressive diphoton resonances.Comment: 28 pages, 9 figs., accepted to PRD; footnote added, typos correcte

    A heavy Higgs boson from flavor and electroweak symmetry breaking unification

    Full text link
    We present a unified picture of flavor and electroweak symmetry breaking based on a nonlinear sigma model spontaneously broken at the TeV scale. Flavor and Higgs bosons arise as pseudo-Goldstone modes. Explicit collective symmetry breaking yields stable vacuum expectation values and masses protected at one loop by the little-Higgs mechanism. The coupling to the fermions generates well-definite mass textures--according to a U(1) global flavor symmetry--that correctly reproduce the mass hierarchies and mixings of quarks and leptons. The model is more constrained than usual little-Higgs models because of bounds on weak and flavor physics. The main experimental signatures testable at the LHC are a rather large mass m_{h^0} = 317\pm 80 GeV for the (lightest) Higgs boson and a characteristic spectrum of new bosons and fermions at the TeV scale.Comment: 5 page

    Momentum Amplituhedron meets Kinematic Associahedron

    Get PDF
    © The Author(s) 2021.This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited (https://creativecommons.org/licenses/by/4.0/).In this paper we study a relation between two positive geometries: the momen- tum amplituhedron, relevant for tree-level scattering amplitudes in N = 4 super Yang-Mills theory, and the kinematic associahedron, encoding tree-level amplitudes in bi-adjoint scalar φ 3 theory. We study the implications of restricting the latter to four spacetime dimensions and give a direct link between its canonical form and the canonical form for the momentum amplituhedron. After removing the little group scaling dependence of the gauge theory, we find that we can compare the resulting reduced forms with the pull-back of the associahedron form. In particular, the associahedron form is the sum over all helicity sectors of the reduced momentum amplituhedron forms. This relation highlights the common sin- gularity structure of the respective amplitudes; in particular, the factorization channels, corresponding to vanishing planar Mandelstam variables, are the same. Additionally, we also find a relation between these canonical forms directly on the kinematic space of the scalar theory when reduced to four spacetime dimensions by Gram determinant constraints. As a by-product of our work we provide a detailed analysis of the kinematic spaces relevant for the four-dimensional gauge and scalar theories, and provide direct links between them.Peer reviewe
    • …
    corecore