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Abstract: In this paper we study a relation between two positive geometries: the momen-
tum amplituhedron, relevant for tree-level scattering amplitudes in N = 4 super Yang-Mills
theory, and the kinematic associahedron, encoding tree-level amplitudes in bi-adjoint scalar
φ3 theory. We study the implications of restricting the latter to four spacetime dimensions
and give a direct link between its canonical form and the canonical form for the momentum
amplituhedron. After removing the little group scaling dependence of the gauge theory,
we find that we can compare the resulting reduced forms with the pull-back of the asso-
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of the reduced momentum amplituhedron forms. This relation highlights the common sin-
gularity structure of the respective amplitudes; in particular, the factorization channels,
corresponding to vanishing planar Mandelstam variables, are the same. Additionally, we
also find a relation between these canonical forms directly on the kinematic space of the
scalar theory when reduced to four spacetime dimensions by Gram determinant constraints.
As a by-product of our work we provide a detailed analysis of the kinematic spaces relevant
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1 Introduction

Scattering amplitudes, being the primary building blocks of physical observables, are cen-
trally important in high-energy physics research. Their computation in perturbative quan-
tum field theory is complicated, with difficulties stemming from redundancies which are
introduced in order to make locality and unitarity manifest. However, in recent years there
has been tremendous development in the techniques available for studying them. These
techniques have significantly improved computational efficiency as well as pushed our con-
ceptual understanding of high-energy physics and several related disciplines. One strand
of this development, proposed by Cachazo, He and Yuan (CHY), led to a new formulation
for the tree-level scattering of massless particles in arbitrary dimensions where amplitudes
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can be written as integrals over the moduli space of Riemann spheres [1, 2]. When re-
stricted to four dimensions, this approach resulted in new twistor-string-inspired formulae
for tree-level amplitudes for N = 8 supergravity [3], planar N = 4 super Yang-Mills theory
(sYM) [3] and four-dimensional bi-adjoint scalar φ3 theory [4]. The latter two theories
also feature prominently in another, equally novel approach, where scattering amplitudes
are encoded geometrically. The paradigm-shift which underpins this geometric method is
that rather than thinking of scattering amplitudes as functions, they are thought of as
differential forms on the kinematic space, the space of physical kinematic variables. The
setting where these ideas were first employed was in the study of scattering amplitudes in
planar N = 4 sYM in momentum twistor space. Here the kinematic space for n particles
is the space of momentum twistors zi with i = 1, . . . , n and the differential form is found
from a scattering amplitude by substituting the Grassmann-odd variables ηi, related to the
R-symmetry of the superspace, with differentials of zi: ηi → dzi. The geometry associated
with this differential form is the amplituhedron [5]. It is an example of a more general
class of objects, collectively called positive geometries [6] — real, oriented, closed geome-
tries with boundaries of all co-dimension equipped with canonical differential forms, which
have logarithmic singularities along all boundaries.

Our focus in this paper will be on two particular positive geometries: the momentum
amplituhedron [7], whose logarithmic differential form gives tree-level amplitudes for N = 4
sYM in spinor helicity space; and the kinematic associahedron [8], from which one can
extract tree-level amplitudes for bi-adjoint φ3 theory. Although amplitudes in both these
theories can be written as integrals over moduli spaces in the CHY formalism, a direct
link has yet to be established between them from the point of view of the geometries. In
this paper we fill this gap and present an explicit relation between canonical forms for
momentum amplituhedra and those for kinematic associahedra and therefore give a direct
link between scattering amplitudes in N = 4 sYM and bi-adjoint φ3 theory.

In order to make this link possible, one needs to study tree-level N = 4 sYM ampli-
tudes in non-chiral superspace. Here a tree-level amplitude in the helicity-k sector can be
written as a differential form of degree (2(n− k), 2k) in (dλ, dλ̃) through the replacement
(η, η̃) → (dλ , dλ̃) [9]. This differential form, after we factorize (half of) the supermomen-
tum conservation, agrees with the canonical form Ωn,k of the momentum amplituhedron
M(λ,λ̃)

n,k , which has degree (2n−4) [7]. Since this degree does not depend on k, it is possible
to define a form for the full n-point superamplitude as the sum of the canonical forms for
the n-point amplitudes in the different k-sectors. In the non-chiral superspace, the super-
amplitude An is invariant under the GL(1)n little group scaling and it is natural to describe
it using a little group invariant parametrization of the on-shell space containing cross-ratios
of spinor helicity variables and Mandelstam variables. When we use this parametrization
for the momentum amplituhedron canonical form instead, this defines a unique, little group
invariant form of degree (n− 3), which we call the reduced momentum amplituhedron form
ωn,k. Roughly speaking, this parametrization leads to the relation

Ωn,k = µn ∧ ωn,k + . . . , (1.1)

where µn is the canonical top form of degree n−1 on the projective space Pn−1, depending
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only on the little group scaling parameters, which can be naturally associated with the
action of the little group, and the ellipsis (. . .) contains terms which are not invariant
under little group scaling. On the other hand, the kinematic associahedron is a geometry on
the kinematic space parametrized solely by planar Mandelstam variables and its canonical
differential form also has degree (n− 3). The main result of this paper is that these forms
are related to each other!1 More precisely, when we evaluate the associahedron form on
the little group invariant space, then it is the same as the sum of reduced momentum
amplituhedron forms summed over all helicity sectors. This relation exposes the common
physics of tree-level amplitudes in both theories and reflects the fact that some singularities
of N = 4 sYM are given by planar tree cubic graphs. Indeed, tree-level color-ordered
amplitudes in N = 4 sYM have poles where the sum of adjacent momenta, the planar
Mandelstam variables, goes on shell P 2

i,j = (pi + pi+1 + . . . + pj)2 → 0, which agrees
with the factorization singularities of the double colour-ordered amplitudes in bi-adjoint
φ3 theory, where poles are given by the vanishing of the propagators P 2

i,j .
One additional question arising from our analysis is whether it is possible to compare

the reduced momentum amplituhedron and associahedron forms directly in the space of
planar Mandelstam variables. We can answer this question in the affirmative for four-
and five-particle scattering, but it is not possible to make such a comparison for higher
numbers of particles. This descends from the fact that in four dimensions any set of at
least six on-shell momenta is not independent due to the Gram determinant constraints.
We will however be able to compare the reduced momentum amplituhedron and associa-
hedron forms on the kinematic space of the scalar theory modulo these Gram determinant
constraints. In order to make this comparison we will compute their push-forwards on this
reduced space and find that the push-forward of the associahedron form is proportional
to the sum over all helicities of push-forwards of the reduced momentum amplituhedron
forms, with a known proportionality factor.

The paper is structured as follows. We begin by reviewing the definitions of the
momentum amplituhedron and the kinematic associahedron in section 2. Both cases can be
described as the intersection of a top-dimensional “positive” region — a region of kinematic
space constrained by particular positivity conditions — and a family of affine subspaces
of the kinematic space. In section 3, we define various kinematic spaces relevant to our
discussion and the maps relating them. We also describe the action that these maps
induce on differential forms. Thereafter, we discuss the main result of this paper, i.e. how
the canonical forms of the momentum amplituhedron and the kinematic associahedron
are related to each other. Then, in section 4, we examine these general statements in
explicit examples. Finally, in section 5, we discuss a general procedure for constructing the
reduced momentum amplituhedron forms. After the conclusions, the appendices collect
various technical results and formulae.

2 Definitions

We begin by reviewing the two positive geometries which will be considered in this paper:
the momentum amplituhedron [7] and the kinematic associahedron [8]. Every positive ge-

1Indeed, at the level of the degree of the differential forms involved, (2n− 4) = (n− 1) + (n− 3).
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ometry comes equipped with a canonical differential form, whose leading singularities or
residues on zero-dimensional boundaries equal ±1. The canonical differential form of the
momentum amplituhedron, respectively associahedron, encodes the tree-level scattering
amplitudes for N = 4 sYM, respectively bi-adjoint φ3, theory. In both cases, we provide
their definitions in their respective kinematic space in terms of the intersection of a pos-
itive region with an affine subspace. For an extensive review on these and other positive
geometries, see [10].

2.1 Momentum amplituhedron

The momentum amplituhedron M(λ,λ̃)
n,k is the positive geometry associated with tree-level

scattering amplitudes in N = 4 sYM in spinor helicity space [7]. Superamplitudes in N = 4
sYM are defined for on-shell chiral superfields Φi, which collect the on-shell supermultiplet
into a single object by means of four Grassmann-odd variables ηAi , A = 1, . . . , 4, for each
particle i. A generic n-particle superamplitude An = An(Φ1,Φ2, . . . ,Φn) can be expanded
in terms of helicity sectors, denoted by k, of Grassmann degree 4k:

An = An,2 +An,3 + . . .+An,n−2, n ≥ 4 , (2.1)

where An,2 is the maximally-helicity-violating (MHV) amplitude, An,3 is the next-to-MHV
(NMHV) amplitude and so on, with An,k the amplitude for the Nk−2MHV sector. Therefore
the superamplitudes live in the on-shell chiral superspace (λa, λ̃ȧ|ηA), a, ȧ = 1, 2. However,
in order to interpret them as differential forms and define the associated positive geometry,
we need to rewrite them in the non-chiral superspace (λa, ηr | λ̃ȧ, η̃ṙ), r, ṙ = 1, 2, where we
perform a Fourier transform for two of the four Grassmann-odd variables. In this way, via
the replacement

ηa → dλa , η̃ȧ → dλ̃ȧ , (2.2)

the tree-level Nk−2MHV scattering amplitudes can be written as differential forms of degree
(2(n− k), 2k) in (dλ, dλ̃) [9]. The geometry whose canonical differential form is this tree-
level amplitude form is the momentum amplituhedron.

We can defineM(λ,λ̃)
n,k directly in terms of kinematic data in the spinor helicity space,

without any reference to auxiliary spaces. Let us start by defining the following (2n− 4)-
dimensional subspace of the kinematic space

Vn,k := {(λai , λ̃ȧi ) : λai = λ∗ai + yaα ∆α
i , λ̃

ȧ
i = λ̃∗ȧi + ỹȧα̇ ∆̃α̇

i , λ
a
i λ̃

ȧ
i = 0} , (2.3)

where (λ∗, λ̃∗) are two fixed two-planes in n dimensions, ∆̃ is a fixed k-plane and ∆ is
an (n − k)-dimensional fixed plane in n dimensions. Moreover, we assume that when we
assemble these subspaces as in

ΛAi =
(
λa∗i
∆α
i

)
, Λ̃Ȧi =

(
λ̃ȧ∗i
∆̃α̇
i

)
, (2.4)

Λ̃ is a positive matrix and Λ is a twisted positive matrix; see [11] for a precise definition of
the latter. We also define a winding space Wn,k as the subset of kinematic space satisfying
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the conditions [9]

Wn,k :={(λai , λ̃ȧi ) : si,i+1,...,i+j > 0 ,
the sequence {〈12〉, 〈13〉, . . . , 〈1n〉} has k − 2 sign flips ,
the sequence {[12], [13], . . . , [1n]} has k sign flips} , (2.5)

where si,i+1,...,i+j are planar multiparticle Mandelstam variables: si,i+1,...,i+j = (pi+pi+1 +
. . . + pi+j)2. Then the momentum amplituhedron M(λ,λ̃)

n,k directly in terms of kinematic
data in the spinor helicity space is the intersection

M(λ,λ̃)
n,k := Vn,k ∩Wn,k .

There are various ways to compute the canonical form Ωn,k onM(λ,λ̃)
n,k , the most common

including the introduction of auxiliary spaces [7], the Grassmannian integrals [9], or the
inverse-soft construction [9] (see also section 5). After finding the canonical form, the
amplitude can be extracted from it via the replacement

An,k(λ, λ̃, η, η̃) = δ4(λη̃ + λ̃η) Ωn,k|dλ→η,dλ̃→η̃ . (2.6)

Finally, we notice that for the momentum amplituhedronM(λ,λ̃)
n,k , the degree of the canon-

ical differential forms is independent of k and equals 2n − 4. This allows us to write the
superamplitude An as a single linear combination of forms for different k

Ωn =
n−2∑
k=2

Ωn,k , (2.7)

and therefore
An(λ, λ̃, η, η̃) = δ4(λη̃ + λ̃η) Ωn|dλ→η,dλ̃→η̃ . (2.8)

2.2 Kinematic associahedron

The kinematic associahedron An is the positive geometry whose canonical differential form
gives tree-level amplitudes in massless bi-adjoint φ3 theory [8]. This is the theory of scalars
carrying the adjoint representation of the product of two different color groups. An n-point
amplitude in this theory can be decomposed into double-partial amplitudes mn(α|β), where
α and β label two color orderings, i.e. a permutation of n elements. In the following we
will focus on the tree-level double-partial amplitudes with the same standard ordering,
m

(0)
n (1, 2, . . . , n|1, 2, . . . , n) =: m(0)

n . The amplitudes m(0)
n can be found by summing over

all color-ordered trivalent planar graphs, each contributing the product of its propagators,
and therefore they are rational functions of Mandelstam variables.

The kinematic associahedron lives in the kinematic space Kn for n massless particles.
This space is linearly spanned by the Mandelstam variables si,j , which satisfy n conditions
of the form

∑
i 6=j si,j = 0. Therefore, its dimension is dimKn = n(n−3)

2 . A natural choice for
a basis of this space is given by the so-called planar variables: given the standard ordering
(12 . . . n), one can define n(n−3)

2 variables

X = {Xi,j} := {si,i+1,...,j−1} , (2.9)
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which are Mandelstam variables formed of momenta of consecutive particles, and which
can be visualised as the diagonals between vertices i and j of a convex n-gon.

Similar to the momentum amplituhedron, the kinematic associahedron can be defined
as the intersection of a positive region and an affine space. The positive region ∆n is
defined by the requirement that all planar variables Xi,j are positive

Xi,j ≥ 0 , 1 ≤ i < j ≤ n . (2.10)

This determines a top-dimensional cone inside Kn. The affine subspace is the (n − 3)-
dimensional subspace Hn ⊂ Kn defined by requiring that

ci,j := −si,j = Xi,j +Xi+1,j+1 −Xi,j+1 −Xi+1,j , (2.11)

are positive constants for all non-adjacent 1 ≤ i < j < n. Then the kinematic associahedron
An is defined as:

An := ∆n ∩Hn . (2.12)

This is an (n − 3)-dimensional subset of Kn which can be naturally parametrised by e.g.
Xi,n with i = 2, . . . , n− 2. One can easily show that its boundary structure is identical to
the (n− 3)-dimensional associahedron [8].

The canonical form of An, which we call ω̃n, can be found by using the fact that the
associahedron is a simple polytope, i.e. a d-dimensional polytope each of whose vertices are
adjacent to exactly d facets, see [8]. All facets are characterised by the vanishing of one of
the planar variables and therefore we can write

ω̃n =
Cn−2∑
p=1

sign(vp)
n−3∧
a=1

dlogXia,ja , (2.13)

where Cn−2 is the number of vertices of the associahedron, i.e. the Catalan number, and
sign(vp) are signs which can be fixed by requiring ω̃n to be projective on Kn. The tree-level
scattering amplitude m(0)

n is related to the differential form in the following way:

ω̃n = m(0)
n dn−3X . (2.14)

3 Maps between kinematic spaces and differential forms

In this section we present an extended discussion on various kinematic spaces which can
be used to write the canonical differential forms of the momentum amplituhedron and
associahedron, and on the maps which link them. We will then move to study how these
maps induce an action on the differential forms, after which we will present our main result:
the canonical differential forms of the momentum amplituhedron and the associahedron are
related in a very specific (and surprising) way.

3.1 Kinematic spaces

We start by presenting the various kinematic spaces in which we can write our canoni-
cal forms.

– 6 –
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On-shell space On. This is the space where the momentum amplituhedron is defined:
the bosonic part of the on-shell superspace which is parametrized by two 2 × n matrices,
(λ, λ̃), modulo momentum conservation which provides four relations between their entries.
Moreover, the canonical form of the momentum amplituhedron is written in terms of minors
of these matrices, which reflects the SL(2)×SL(2) symmetry of the amplitude. Each SL(2)
symmetry reduces the dimension of the space by 3, and therefore the on-shell space On
has dimension dimOn = 4n− 10.

Little group invariant space Ln. The N = 4 sYM amplitude in non-chiral superspace
is invariant under the little group scaling transformations

λi → tiλi , λ̃i → t−1
i λ̃i , ηi → tiηi , η̃i → t−1

i η̃i . (3.1)

We can make this invariance manifest by parametrizing (λi, λ̃i) with a set of n variables ti
and calling the remaining variables collectively a. There are exactly 3n−10 independent a
variables, and this comes from the fact that we start from a (4n− 10)-dimensional on-shell
space and remove n variables ti. In the following, we will use the same parametrization to
rewrite the canonical form of the momentum amplituhedron.

There are many ways in which we can parametrize the (3n − 10)-dimensional space
Ln.2 One important parametrization is obtained by first focusing on the λ matrix and
introducing variables ti as in (3.1), then the remaining λ-space has dimension 2n−3−n =
n − 3. This is nothing else than the moduli space of a Riemann sphere with n punctures
and can be naturally parametrized using the Fock-Goncharov variables [13]:

λ =
(

0 1 1 1 1 . . . 1
−1 0 1 1 + a1 1 + a1 + a1a2 . . . 1 + a1 + . . .+ a1a2 . . . an−3

)
. (3.2)

The λ̃matrix can be parametrized by demanding that it is perpendicular to λ and fixing the
SL(2) invariance. We will call this type of parametrization the extended Fock-Goncharov
parametrization.

In the extended Fock-Goncharov parametrization, by choosing the λ matrix as the
starting point we have broken the parity symmetry between λ and λ̃. Replacing the roles
of λ and λ̃ would give us another parametrization in which λ̃ is written in terms of n − 3
Fock-Goncharov variables and λ depends on the remaining ones. This points to a natural
set of coordinates which highlights the parity symmetry of amplitudes. Let us define the
following cross-ratios:

Rijkl = 〈ij〉〈kl〉
〈il〉〈jk〉

, R̄ijkl = [ij][kl]
[il][jk] . (3.3)

Note that ai in (3.2) can be written in terms of these cross-ratios as ai = R1i+1i+2i+3. There
are n−3 algebraically independent cross-ratios R and n−3 algebraically independent cross-
ratios R̄. In order to get the proper number of parameters for the little group invariant
space Ln, i.e. (3n − 10), we need to supplement them with exactly n − 4 Mandelstam

2We can think of the space Ln as the on-shell space On modulo the little group torus, On/T , with
T = Rn+, see also [12].
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variables. In this way, all variables are manifestly little group scaling invariant and parity
symmetry is also manifest.3 We will give explicit expressions for the Fock-Goncharov
parametrization when we study examples in the following sections.

Space of Mandelstam variables Kn and Gram determinant surface Gn. As al-
ready mentioned, the associahedron is naturally realized in the kinematic space Kn of the
scalar theory, i.e. the space parametrized by the set of n(n−3)

2 planar Mandelstam variables.
However, when the spacetime dimension d is smaller than the number of independent mass-
less momenta n−1, d < n−1, not all planar Mandelstam variables are independent. There
are indeed further constraints, the so-called Gram determinant conditions. For a fixed di-
mension d, Gram matrices are square (d + 1) × (d + 1) matrices which depend on d + 1
momenta pi:

G(pi1 , . . . , pid+1) = (si,j)i,j∈{i1,i2,...,id+1} , (3.4)

and consist of two-particle Mandelstam variables si,j = 2pi · pj , i, j ∈ {i1, i2, . . . , id+1}. For
d < n − 1, the determinant of each Gram matrix must vanish, which imposes constraints
on the planar variables. Therefore, for the four-dimensional scalar theory one finds that
the Gram determinant constraints start to appear from n ≥ 6. Not all Gram determinant
conditions are independent, and one can find that solving all of them reduces the number
of independent parameters to 3n− 10, in agreement with the dimension of the little group
scaling invariant space Ln. We can therefore define a (3n − 10)-dimensional space Gn
inside the n(n−3)

2 -dimensional space of planar Mandelstam variables by imposing the Gram
determinant conditions. We denote the coordinates on Gn by a collective label x. This will
allow us to perform the push-forward of the associahedron canonical form to the surface
where all Gram determinants vanish.

3.2 Maps between kinematic spaces

The kinematic spaces defined in the previous section are related among each other via
maps, which we define in the following. We collect all these maps in figure 1. In section 4
we will give explicit expressions for these maps for the first few values of n.

Removing the little group scaling dependence according to (3.1) and parametrizing the
on-shell space On by the little group scaling variables ti and the extended Fock-Goncharov
variables a defines a function

fn : Ln → On , (ti,a)
n+(3n−10)

7→ (λ, λ̃)
4n−10

. (3.5)

If we restrict to ti > 0 then fn is an invertible map.
There is a natural map from the little group invariant space Ln to the Mandelstam

space or its subset satisfying Gram determinant conditions, Kn and Gn, respectively, given
by si,j = 〈ij〉[ij]. We denote the map to Gn by gn:

gn : Ln → Gn , a
3n−10

7→ x
3n−10

, (3.6)

3However, in the extended Fock-Goncharov parametrization, cyclic symmetry is not manifest.
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On
on-shell space

(λ, λ̃)
4n− 10

Ωn,k

Ln
LGS invariants
(a) or (R, R̄, s)

3n− 10
ωn,k, ωn

Gn
Mandelstams/Gram

(x)
3n− 10
νn,k, νn

Kn
Mandelstams

(X) or (s)
n(n−3)

2
ω̃n

fn

pn

gn hn

Figure 1. Summary of the kinematic spaces and relations between them, together with the dif-
ferential forms defined on these spaces. We highlight the canonical forms of the momentum ampli-
tuhedron Ωn,k and of the associahedron ω̃n.

and the map to Kn by pn:

pn : Ln → Kn , a
3n−10

7→ X
n(n−3)

2

. (3.7)

Importantly, these maps are rational maps and for n ≥ 5 they are not invertible. Instead,
one can find that the number of local inverses increases when one increases n.

Finally, the Gram determinant conditions define a map from the space of all planar
Mandelstam variables to its (3n− 10)-dimensional subset:

hn : Kn → Gn , X
n(n−3)

2

7→ x
3n−10

. (3.8)

Since this map is defined by imposing some number of Gram determinant constraints on X,
we are not able to write hn explicitly. However, the solutions to these constraints define for
us all possible inverse functions, which we can use to perform push-forwards of differential
forms from Kn to Gn, as explained in the following section.

3.3 Differential forms

Definitions. The maps defined in section 3.2 can be used to relate the canonical forms
of different positive geometries. We consider here two operations on differential forms:
pull-back and push-forward. The pull-back of a differential form is a standard notion in
differential geometry, while the push-forward of a differential form was discussed in [6]
for top forms. Below, we will extend their definition to differential forms which are not
top-dimensional.

If we consider a map φ : A → B and a form β on B, we can pull it back to a form α

on A using the map φ. Let us assume that A is an n-dimensional space with coordinates
(x1, . . . , xn), B is an m-dimensional space with coordinates (y1, . . . , ym), and let us write
φ = (φ1, . . . , φm). Then for any k-form β written in the coordinate basis for B

β =
∑

1≤i1≤...≤ik≤m
βi1...ik(y1, . . . , ym)dyi1 ∧ . . . ∧ dyik , (3.9)

the pull-back of β is

α = φ∗(β) :=
∑

1≤i1≤...≤ik≤m
βi1...ik(φ(x1, . . . , xn)) dφi1 ∧ . . . ∧ dφik . (3.10)

In practice, we simply substitute the explicit expressions for yi = φi(x) into the form β.
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Instead, if we want to start with a differential form on A and use the map φ to find
a corresponding form on B, then we can use the so-called push-forward defined in the
following way. For a given point b ∈ B we can find its pre-image, namely the collection of
points ai in A satisfying φ(ai) = b. Then there exists a neighbourhood Ui of each point ai
and a neighbourhood V of b, such that we can define the inverse maps: ψi = φ|−1

Ui
: V → Ui.

Then the push-forward of a form α on A through φ is a differential form β on B given by
the sum over all solutions of the pull-backs through the inverse maps ψi:

β = φ∗α =
∑
i

ψ∗i α . (3.11)

In practice, we solve the equation y = φ(x) and for each solution x = ψi(y) we perform the
pull-back of α and then sum the resulting differential forms.

Comparing forms on Ln. We now describe the action of the maps introduced above
on the canonical forms of the momentum amplituhedron and the associahedron. Here we
discuss their relation when we pull them back to the little group invariant space Ln. Later
on, we will use push-forwards to compare these forms on the Gram determinant surface Gn
inside the kinematic space Kn.

Our first observation is that the pull-back of the momentum amplituhedron canonical
form Ωn,k through the map fn defines a differential form on the little group invariant space
Ln. In particular, based on the examples we studied, we notice that the term with the
highest degree in dti is independent of k as well as our choice of parametrization for Ln.
Explicitly, we find that

f∗n Ωn,k = µn ∧ ωn,k +O(dn−2t) , (3.12)

where
µn = µ

(
Pn−1

)
=

n∑
i=1

(−1)n−idlogt1 ∧ . . . ∧ dlogti ∧ . . . ∧ dlogtn , (3.13)

is the canonical form on the projective space Pn−1, the overline indicates that that term is
missing, and O(dn−2t) denotes terms which are of lower degree in dti. The explicit form
of these lower-order terms depends on how we parametrize the space Ln and therefore
they are not well-defined on Ln. For this reason we will focus only on the top component
µn ∧ ωn,k in (3.13), and thus lose some information about the momentum amplituhedron
form Ωn,k. Notice that since degΩn,k = 2n− 4 and degµn = n− 1 then degωn,k = n− 3.
We call ωn,k the reduced momentum amplituhedron form. Importantly, since this form is
defined on Ln, it is little group scaling invariant. In section 5 we will show how to construct
it recursively using the inverse-soft construction.

Starting from the opposite end of our story, we can pull the associahedron form ω̃n
back to the little group invariant space Ln using the map pn to define

ωn = p∗n ω̃n . (3.14)

We find that this pull-back of the associahedron form to Ln is equal to the sum over all
k-sectors of the reduced momentum amplituhedron form:

ωn =
n−2∑
k=2

ωn,k . (3.15)
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On Ln Gn Kn

Ωn,k ωn,k νn,k

ωn =
∑
k ωn,k

#gn
#hn νn =

∑
k νn,k

ωn νn

ω̃n

fn

pn

gn hn

f∗n (gn)∗

(hn)∗p∗n

Figure 2. Relations between the kinematic spaces and the various differential forms on them
defined in this section. We highlight the canonical forms of the momentum amplituhedron Ωn,k

and of the associahedron ω̃n.

Therefore, we can write that on Ln the (pull-back of the) differential form for the full
N = 4 sYM amplitude Ωn and the (pull-back of the) differential form for the bi-adjoint φ3

amplitude ω̃n are related in the following way:

Ωn =
n−2∑
k=2

Ωn,k
f∗n−→ µn ∧

n−2∑
k=2

ωn,k = µn ∧ ωn
p∗n←− µn ∧ ω̃n . (3.16)

This relation is illustrated in diagrammatic form in figure 2 and is the main result of this
paper. As it will be more evident in the explicit examples in section 4, (3.15) relates the
singularity structure of the momentum amplituhedron to that of the kinematic associahe-
dron. In particular, the factorization channels given by the vanishing of planar Mandelstam
variables are the same.

Comparing forms on Gn. The form ωn,k in (3.12) can be further pushed forward using
the map gn to define

νn,k = (gn)∗ ωn,k . (3.17)

On the other hand, the Gram determinant map hn allows us to also push the associahedron
canonical form ω̃n forward onto the Gram determinant surface to define

νn = (hn)∗ ω̃n . (3.18)

This relation is again illustrated in figure 2. As we will present more explicitly later, in the
various examples we checked, the following statement holds true

n−2∑
k=2

νn,k =

νn, for n = 4,
2νn, for n > 4.

(3.19)
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We found that the intriguing factor of 2 on the right hand side of (3.19) can be explained
in the following way. Let #gn (resp. #hn) be the degree of the map gn (resp. hn), i.e. the
number of solutions to the equation y = gn(x) (resp. y = hn(x)). Then the formula (3.19)
can be rewritten as

n−2∑
k=2

νn,k = #gn
#hn

νn. (3.20)

This can be explicitly checked for n = 4, 5, 6, 7, for which we get:4 (#g4,#h4) = (1, 1),
(#g5,#h5) = (2, 1), (#g6,#h6) = (4, 2) and (#g7,#h7) = (8, 4). We believe that this
pattern extends beyond n = 7. We postpone a more detailed discussion on (3.20) until the
next section when we consider explicit examples.

4 Examples

To illustrate the relations we provided in section 3, we now present a few examples for small
values of n. In particular, we give some explicit expressions for the maps and differential
forms introduced there.

4.1 Four-point amplitudes

The simplest case in which the momentum amplituhedron and kinematic associahedron
are non-trivial is for four-particle scattering. For the kinematic associahedron A4 defined
on K4, the canonical form is [8]

ω̃4 = d log X1,3
X2,4

= d log s1,2
s2,3

. (4.1)

On the other hand, the N = 4 sYM amplitude consists of only one k-sector, namely k = 2,
and we need to consider just one momentum amplituhedron geometry M(λ,λ̃)

4,2 , for which
the canonical form written in on-shell space O4 is [9]

Ω4,2 = dlog 〈12〉
〈13〉 ∧ dlog 〈23〉

〈13〉 ∧ dlog 〈34〉
〈13〉 ∧ dlog 〈14〉

〈13〉 . (4.2)

Maps. In order to define the map f4 : L4 → O4 we remove the little group scaling and
parametrize λ and λ̃ using the extended Fock-Goncharov variables which read

λ =
(

0 t2 t3 t4
−t1 0 t3 t4(1 + a1)

)
, λ̃ =

(
t−1
1 a2 −t−1

2 a2 t
−1
3 a2 0

t−1
1 (1 + a1) −t−1

2 0 t−1
4

)
, (4.3)

where we have made a particular choice of SL(2) when parametrizing λ̃. On the other hand
we can define a map p4 : L4 → K4 which takes the form:

p4 : s1,2 = 〈12〉[12] = a1a2, s2,3 = 〈23〉[23] = a2. (4.4)

Finally, since there are no Gram determinant constraints for n = 4, one finds that
G4 = K4 and h4 = I4 is the identity map, which implies that g4 = p4 and ν4 = ω̃4.

4Depending on the choice of basis for G7 we also find (#g7, #h7) = (16, 8), but their ratio is still 2.
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Comparing forms on L4. Using the parametrization (4.3), we can now pull Ω4,2 back
to the L4 space yielding

f∗4 Ω4,2 = µ4 ∧ dloga1 −→ ω4,2 = dloga1 = dlogR1234 , (4.5)

with µ4 defined in (3.13) and the cross-ratio R1234 defined in (3.3). We compare it to the
pull-back of ω̃4 using the map p4 to get again

ω4 = p∗4 ω̃4 = dlogR1234 . (4.6)

Therefore on L4 we have
ω4 = ω4,2 . (4.7)

Comparing forms on G4 = K4. Since the map p4 is invertible, pushing the form ω4,2
forward via p4 returns the associahedron form

ν4,2 = (p4)∗ dlogR1234 = dlogs1,2
s2,3

= ν4 . (4.8)

4.2 Five-point amplitudes

The canonical form for the associahedron in kinematic space K5 is [8]

ω̃5 = dlogX1,3
X2,4

∧ dlogX1,3
X1,4

+ dlogX1,3
X2,5

∧ dlogX3,5
X2,4

. (4.9)

From the momentum amplituhedron side, there are two geometries contributing to the
superamplitude A5 coming from the k = 2 and k = 3 sectors. Their canonical forms are
given by

Ω5,2 = −d log 〈13〉
〈14〉 ∧ d log 〈34〉

〈14〉 ∧ d log 〈45〉
〈14〉 ∧ d log 〈51〉

〈14〉 ∧ d log 〈12〉
〈13〉 ∧ d log 〈23〉

〈13〉 , (4.10)

and Ω5,3 can be found from Ω5,2 by replacing 〈〉 → [].

Maps. We define the map f5 : L5 → O5 by removing the little group scaling and choosing
an extended Fock-Goncharov parametrization on L5 which depends on 3 × 5 − 10 = 5
variables. We choose the parameters {R1234, R1345, R̄1234, R̄1345, s1,2}, which allow us to
write λ as

λ =

 0 t2 t3 t4 t5

−t1 0 t3 t4(1 +R1234) t5(1 +R1234 +R1234R1345)

 , (4.11)

and the parametrization of λ̃ can be found in appendix A. On the other hand, the map
p5 : L5 → K5 can be easily found by calculating the minors of the matrices (4.11) and (A.1).
The map p5 is a rational map and it is not invertible. Instead, we can find two local inverses
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which take the form

p−1
5,± :

R1234 = s1,2 s2,3 + s3,4 s2,3 − s3,4 s4,5 − s1,2 s5,1 + s4,5 s5,1 ±
√

∆
2s2,3(s2,3 − s4,5 − s5,1)

R1345 = s1,2 s2,3 − s3,4 s2,3 + s3,4 s4,5 − s1,2 s5,1 + s4,5 s5,1 ∓
√

∆
2s3,4 s5,1

R̄1234 = s1,2 s2,3 + s3,4 s2,3 − s3,4 s4,5 − s1,2 s5,1 + s4,5 s5,1 ∓
√

∆
2s2,3(s2,3 − s4,5 − s5,1)

R̄1345 = s1,2 s2,3 − s3,4 s2,3 + s3,4 s4,5 − s1,2 s5,1 + s4,5 s5,1 ±
√

∆
2s3,4 s5,1

, (4.12)

where the two solutions are distinguished by the sign in front of the square root of

∆ = (s2,3 s3,4 + s1,2(s2,3− s5,1) + s4,5(s5,1− s3,4))2−4s1,2 s2,3 s3,4(s2,3− s4,5− s5,1) . (4.13)

Interestingly, we note that the conjugation operation, interchanging R and R̄, exchanges
the sign in front of the

√
∆:

R̄i,j,k,l = Ri,j,k,l|√∆→−
√

∆ . (4.14)

As for n = 4, no Gram determinant conditions arise for n = 5 and we have that
G5 = K5, g5 = p5, and h5 = I5, the identity map. This implies that ν5 = ω̃5.

Comparing forms on L5. Pulling back the momentum amplituhedron canonical forms
to L5 we get

f∗5 Ω5,2 = µ5 ∧ d logR1234 ∧ d logR1345 −→ ω5,2 = d logR1234 ∧ d logR1345 ,

(4.15)

f∗5 Ω5,3 = µ5 ∧ d log R̄1234 ∧ d log R̄1345 +O(d3t) −→ ω5,3 = d log R̄1234 ∧ d log R̄1345 .

(4.16)

We note that the pull-back of Ω5,3 contains several terms which are of lower degree in dti’s.
Their explicit form is however not needed in our definition (3.12) of the reduced forms ω5,k.

Starting from the kinematic associahedron A5, we can pull the associahedron form (4.9)
back to the L5 space, yielding

ω5 = p∗5 ω̃5 = d logR1234 ∧ d logR1345 + d log R̄1234 ∧ d log R̄1345 = ω5,2 + ω5,3 . (4.17)

This verifies our first main statement (3.15).

Comparing forms on G5 = K5. As there is no non-trivial Gram determinant condition,
we can push ω5,k directly to the native space of the associahedron K5 via the map p5. To
do this, we need to pull ω5,k back using the two functions (4.12) and then sum the resulting
differential forms. Importantly, the square roots present in these inverse functions cancel
out in the sum and we get

ν5,2 = (p5)∗ ω5,2 = ω̃5 , ν5,3 = (p5)∗ ω5,3 = ω̃5 . (4.18)

This verifies our second main statement (3.19), since we have

ν5,2 + ν5,3 = 2ω̃5 = 2ν5 . (4.19)
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4.3 Six-point amplitudes

For the n = 6 case, the canonical form for the associahedron A6 on K6 is [8]

ω̃6 = d log X2,4
X1,3

∧ d log X1,4
X4,6

∧ d log X1,5
X4,6

+ d log X2,6
X13

∧ d log X3,6
X1,3

∧ d log X4,6
X3,5

−d log X2,6
X1,5

∧ d log X2,5
X3,5

∧ d log X2,4
X3,5

+ d log X2,4
X1,3

∧ d log X4,6
X3,5

∧ d log X2,6
X1,5

. (4.20)

For the momentum amplituhedron we have three different sectors which contribute to the
superamplitude A6, namely k = 2, k = 3, and k = 4. The differential form for the
momentum amplituhedronM(λ,λ̃)

6,2 on the O6 space can be written as

Ω6,2 = − d log 〈14〉
〈15〉 ∧ d log 〈45〉

〈15〉 ∧ d log 〈56〉
〈15〉 ∧ d log 〈61〉

〈15〉 ∧ d log 〈13〉
〈14〉 ∧ d log 〈34〉

〈14〉

∧ d log 〈12〉
〈13〉 ∧ d log 〈23〉

〈13〉 , (4.21)

and again one can find the answer for the k = 4 sector through the conjugation operation,
〈〉 → []. While the MHV and MHV canonical forms are rather simple to write down, the
k = 3 differential form is more involved since it is written as a sum of three Britto-Cachazo-
Feng-Witten (BCFW) terms [14, 15]. For their explicit expression see [9] or section 5 where
we recall how to construct BCFW differential forms using the inverse-soft construction.
Here we just recall that

Ω6,3 = Ωγ2
6,3 + Ωγ4

6,3 + Ωγ6
6,3 = Ωγ1

6,3 + Ωγ3
6,3 + Ωγ5

6,3 , (4.22)

where Ωγi
6,3 indicates the BCFW term with vanishing minor γi := (i, i+ 1, i+ 2).

Maps. In order to define the map f6 : L6 → O6 we again use the extended Fock-
Goncharov parametrization for λ and λ̃, choosing as our 3 × 6 − 10 = 8 parameters the
cross-ratios {R1234, R1345, R1456}, the cross-ratios {R̄1234, R̄1345, R̄1456}, and two Mandel-
stam variables, say {s1,2, s2,3}. The explicit expressions for λ can be read off from (3.2)
but the ones for λ̃ become very large and we will not include them here.

Using the extended Fock-Goncharov parametrization one can easily construct the maps
g6 : L6 → G6 and p6 : L6 → K6 using si,j = 〈ij〉[ij] and substituting the explicit forms of
matrices λ and λ̃. Here, we need to decide which planar Mandelstam variables we use to
parametrize the space G6 and our choice is: (s1,2, s2,3, s3,4, s4,5, s5,6, s6,1, s1,2,3, s2,3,4). For
the push-forward (g6)∗ we need to invert the map g6 which leads to four solutions, one of
which is

g−1
6,1 :

R
(1)
1234 = s1,2s2,3 + s2,3s3,4 − s2,3s5,6 − s3,4s1,2,3 − s1,2s2,3,4 + s1,2,3s2,3,4 −

√
∆1

2s2,3(s2,3 + s5,6 − s1,2,3 − s2,3,4)

R
(1)
1345 = −s1,2s2,3 + s2,3s3,4 + s2,3s5,6 − s3,4s1,2,3 + s1,2s2,3,4 − s1,2,3s2,3,4 −

√
∆1

2s3,4(s5,6 + s6,1 − s2,3,4)

×s2,3s5,6 + s4,5s5,6 − s5,6s6,1 + s6,1s1,2,3 − s4,5s2,3,4 − s1,2,3s2,3,4 −
√

∆2
2(s2,3s5,6 − s1,2,3s2,3,4)

R
(1)
1456 = −s2,3s5,6 + s4,5s5,6 + s5,6s6,1 − s6,1s1,2,3 − s4,5s2,3,4 + s1,2,3s2,3,4 −

√
∆2

2s4,5s6,1
(4.23)
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and

R̄
(1)
ijkl = R

(1)
ijkl|√∆1↔−

√
∆1,
√

∆2↔−
√

∆2
, (4.24)

where the arguments of the square roots, ∆1 and ∆2, are written explicitly in appendix B.
The remaining three inverses of g6 can be obtained by exchanging the signs in front of the
square roots

R
(2)
ijkl = R

(1)
ijkl|√∆1↔−

√
∆1
,

R
(3)
ijkl = R

(1)
ijkl|√∆2↔−

√
∆2
,

R
(4)
ijkl = R

(1)
ijkl|√∆1↔−

√
∆1,
√

∆2↔−
√

∆2
.

(4.25)

To define the map h6, we notice that the kinematic space K6 is nine-dimensional but
the planar Mandelstam variables satisfy one Gram condition in four dimensions, reducing
it to the eight-dimensional G6 space. When solving the Gram determinant condition one
needs to decide with respect to which variables one wants to solve it: we decided to solve
for s3,4,5 and therefore parametrize the G6 as above. Then s3,4,5 can be found by solving
the Gram determinant condition to find two solutions

h−1
6,± : s3,4,5 = Γ±

√
∆1∆2

2s1,4Q
, (4.26)

where ∆1 are ∆2 are the same as before, s1,4 = s2,3 + s5,6 − s1,2,3 − s2,3,4 and Q =
s2,3s5,6 − s1,2,3s2,3,4, and the explicit form for Γ can be found in appendix B.

Comparing forms on L6. For the MHV/MHV sectors the pull-back of Ω6,2 and Ω6,4
on L6 takes a very simple form

f∗6 Ω6,2 = µ6 ∧ ω6,2 −→ ω6,2 = dlogR1234 ∧ dlogR1345 ∧ dlogR1456 , (4.27)
f∗6 Ω6,4 = µ6 ∧ ω6,4 +O(d4t) −→ ω6,4 = dlogR̄1234 ∧ dlogR̄1345 ∧ dlogR̄1456 . (4.28)

For k = 3, we can use the inverse-soft construction (see section 5) to find the following
compact expression for ω6,3

f∗6 Ω6,3 = µ6 ∧ ω6,3 +O(d4t) −→ ω6,3 = d logR(234)
5612̂ ∧ d logR(234)

152̂4̂ ∧ d logR(234)
12̂3̂4̂

+ d logR(456)
1236̂ ∧ d logR(456)

314̂6̂ ∧ d logR(456)
14̂5̂6̂

+ d logR(612)
3456̂ ∧ d logR(612)

546̂2̂ ∧ d logR(612)
56̂1̂2̂ , (4.29)

where Rγijkl is the standard invariant cross-ratio built out of angle brackets, see (4.22) for an
explanation on the label γ, and hatted particles î in Rγ are defined as λα

î
=
∑
j∈γ λ

α
j [ji].

Finally, when we pull the associahedron form (4.20) back to L6 using the map p6 we
find that

ω6 = p∗6 ω̃6 = ω6,2 + ω6,3 + ω6,4 . (4.30)
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Comparing forms on G6. This is the first time when the space Gn differs from Kn
and we can perform a non-trivial push-forward of the associahedron form ω̃n to Gn. In
order to do that we sum pull-backs of ω̃6 using the two solutions to the Gram determinant
condition (4.26) and we find

ν6 = (h6)∗ω̃6 . (4.31)

On the other hand we can use the four inverses of g6 in (4.23) to find

ν6,k = (g6)∗ ω6,k k = 2, 3, 4 . (4.32)

One intriguing observation is that the differential forms ν6,k behave non-canonically, with
residues on zero-dimensional boundaries no longer restricted to ±1. A more detailed dis-
cussion on this surprising behaviour for the case ν6,2, as well as its explicit form, can be
found in appendix C.

Finally, we have explicitly checked that

ν6,2 + ν6,3 + ν6,4 = 2ν6 . (4.33)

The appearance of the factor of 2 above is a property of the push-forwards, not of the
specific differential forms involved. To see this, we start by rewriting (4.33) as

(g6)∗p∗6 ω̃6 = 2(h6)∗ω̃6 . (4.34)

Recall that G6 is obtained from K6 by solving the Gram determinant condition with respect
to s3,4,5. If we take β to be an arbitrary differential form on K6 which does not depend on
s3,4,5, then

(h6)∗ β = #h6 β, (4.35)

and

(g6)∗p∗6 β = #g6 β, (4.36)

follow trivially, where #g6 = 4 (resp. #h6 = 2) counts the degree of g6 (resp. h6). Com-
bining (4.35) and (4.36) we have

(g6)∗p∗6 β = #g6
#h6

(h6)∗ β = 2(h6)∗ β. (4.37)

To see that (4.37) holds for all differential forms on K6, including those which do depend
on s3,4,5, observe that the four solutions for g−1

6,i are related by a Z2×Z2 symmetry, where
each Z2 acts by flipping the sign of one of the square roots, and this symmetry group
double-covers the two solutions for h−1

6,±. Given that the Gram determinant condition is
automatically satisfied on L6, this double covering implies that one of h−1

6,± corresponds to
the composition p6 ◦ g−1

6,1 = p6 ◦ g−1
6,4 while the other corresponds to p6 ◦ g−1

6,2 = p6 ◦ g−1
6,3.

It then follows that (4.37) holds for all differential forms β on K6.
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4.4 Beyond n = 6

We have also checked that the relations (3.15) and (3.19) are true in the n = 7 case. In
particular, we found that

ω7 = ω7,2 + ω7,3 + ω7,4 + ω7,5 , (4.38)
ν7,2 + ν7,3 + ν7,4 + ν7,5 = 2ν7 . (4.39)

The explicit forms for the differential forms present in these relations are very involved
and therefore we do not provide more explicit details here. We conjecture that the rela-
tions (3.15) and (3.19) hold true for any n.

Finally, we would like to add that the reduced momentum amplituhedron forms for
MHV and MHV amplitudes have very simple expressions for general n:

ωn,2 =
n−3∧
i=2

dlogR1 i i+1 i+2 , ωn,n−2 =
n−3∧
i=2

dlogR̄1 i i+1 i+2 . (4.40)

These formulae are easily proven using the inverse-soft construction (see section 5) where
in both cases particle 2 is taken to be the inverse-soft particle.

5 Inverse-soft construction for reduced momentum amplituhedron forms

In this section we show how the inverse-soft (IS) construction given in [9] can be used
to obtain the reduced momentum amplituhedron form associated with any momentum
amplituhedron canonical form. In particular, we present an algorithm for recursively con-
structing any5 reduced form starting from ω4,2 (the reduced form associated with Ω4,2). To
this end, we first review the IS construction from [9] and then study the effect of removing
the little group scaling.

Recall that in the BCFW construction of scattering amplitudes, the amplitude An,k
is given by a sum of BCFW terms and each BCFW term can be labelled by an affine
permutation corresponding to a cell in the positive Grassmannian G+(k, n); see [17] for
details. A BCFW term for n ≥ 4 particles labelled by an affine permutation σ is said to
be inverse-soft (IS) constructible if there exists an i ∈ [n] = {1, 2, . . . , n} such that

σ(i− 1) = i+ 1 , or σ(i+ 1) = i− 1 , (5.1)

where equality is understood to mean modulo n. If σ(i−1) = i+1, then i is said to label a
helicity-preserving IS particle. It was argued in [9] that the corresponding canonical form
can then be written as

Ωσ(1, . . . , i, . . . , n) = Ωσ̂(1, . . . , î− 1, î+ 1, . . . , n) ∧ Ω3,2(i− 1, i, i+ 1) , (5.2)

where

λ̃
î−1 = λ̃i−1 + 〈i i+ 1〉

〈i− 1 i+ 1〉 λ̃i , λ̃
î+1 = λ̃i+1 + 〈i− 1 i〉

〈i− 1 i+ 1〉 λ̃i , (5.3)

5There exists a particular BCFW recursion scheme for which the on-shell diagrams for any tree-level
amplitude are inverse-soft constructible [9, 16, 17].

– 18 –



J
H
E
P
0
2
(
2
0
2
1
)
0
4
1

with λ’s unchanged and

Ω3,2(i− 1, i, i+ 1) = d log 〈i− 1 i〉
〈i− 1 i+ 1〉 ∧ d log 〈i i+ 1〉

〈i− 1 i+ 1〉 . (5.4)

Alternatively, if σ(i + 1) = i − 1, then i is a helicity-increasing IS particle and the corre-
sponding canonical form is given by

Ωσ(1, . . . , i, . . . , n) = Ωσ̂(1, . . . , î− 1, î+ 1, . . . , n) ∧ Ω3,1(i− 1, i, i+ 1) , (5.5)

where

λ
î−1 = λi−1 + [i i+ 1]

[i− 1 i+ 1]λi , λ
î+1 = λi+1 + [i− 1 i]

[i− 1 i+ 1]λi , (5.6)

with λ̃’s unchanged and

Ω3,1(i− 1, i, i+ 1) = d log [i− 1 i]
[i− 1 i+ 1] ∧ d log [i i+ 1]

[i− 1 i+ 1] . (5.7)

In both cases, σ̂ is an affine permutation on [n] \ {i} whose precise definition (which can
be found in [9]) depends on whether i is k-preserving or k-increasing. More importantly,
by construction we obtain an expression for Ωσ as a single wedge product of d log’s:

Ωσ(1, . . . , n) =
2n−4∧
j=1

d logαj . (5.8)

We shall refer to the arguments {αj}nj=1 of the d log’s in the above expression as canonical
variables for Ωσ.

Let us now consider the effect of little group scaling on canonical variables. Recall the
expression for Ω4,2 given in (4.2) and notice that under little group scaling, the canonical
variables have the following behaviour

α1 = 〈12〉
〈13〉 ∼

t2
t3
, α2 = 〈23〉

〈13〉 ∼
t2
t1
, α3 = 〈34〉

〈13〉 ∼
t4
t1
, α4 = 〈14〉

〈13〉 ∼
t4
t3
. (5.9)

In particular, we find that for all i ∈ [4], there is a canonical variable α̃i such that either
α̃i or 1/α̃i scales like ti/ti+1 (where t4+1 = t1). This is a general property of canonical
variables in IS-constructible canonical forms. In particular, if we take Ωσ to be an IS-
constructible canonical form on n ≥ 4 particles with canonical variables {αj}2n−4

j=1 then for
all i ∈ [n] there is at least one canonical variable α̃i ∈ {αj}2n−4

j=1 such that either α̃i or 1/α̃i
scales like ti/ti+1 (where tn+1 = t1).

We can now use this fact to construct the reduced canonical forms. First, we combine
the expressions (5.2) and (5.5) into a single formula

Ωσ(1, . . . , i, . . . , n) = Ωσ̂(1, . . . , î− 1, î+ 1, . . . , n) ∧ Ω3,k′(i− 1, i, i+ 1) , (5.10)

where k′ = 1 or k′ = 2, and

Ω3,k′(i− 1, i, i+ 1) = d log(xi) ∧ d log(yi) , (5.11)
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with 
xi = [i−1 i]

[i−1 i+1] and yi = [i i+1]
[i−1 i+1] , for k′ = 1 ,

xi = 〈i−1 i〉
〈i−1 i+1〉 and yi = 〈i i+1〉

〈i−1 i+1〉 , for k′ = 2 .
(5.12)

Let us denote by {βj}2n−6
j=1 the canonical variables for Ωσ̂ in (5.10). Then there exists a

β̃ ∈ {βj}2n−6
j=1 such that

ωσ(1, . . . , i, . . . , n) = (−1)n+i+k′d log
(
xi
yi
β̃s
)
∧ ωσ̂(1, . . . , î− 1, î+ 1, . . . , n) . (5.13)

Here, β̃ and s ∈ {±1} are fixed by the requirement that the argument of the first logarithm,
xi
yi
β̃s, is little group scaling invariant. In particular, since xi

yi
∼ ti+1

ti−1
for k′ = 1 and xi

yi
∼ ti−1

ti+1

for k′ = 2, we know from our discussion above that we can always find such a β̃ which
cancels this scaling.6

We can fix all MHV reduced forms to have coefficient +1 by choosing i = 2 to be the
IS particle and by absorbing (−1)n into a redefinition of Ωn. This is the origin of the minus
signs in (4.10) and (4.21). Fixing the sign of the MHV reduced form in this way provides
a useful prescription for fixing the sign ambiguity in the definition of the canonical form of
the kinematic associahedron.

6 Conclusions

Scattering amplitudes in various theories are encoded in logarithmic differential forms
on the kinematic space. In this paper we have shown a surprising relation between the
canonical forms of the momentum amplituhedron and the kinematic associahedron, i.e. the
positive geometries associated to tree-level amplitudes in N = 4 sYM and bi-adjoint φ3

theory, respectively. In particular, starting from the differential form for the full amplitude
in N = 4 sYM and stripping off the (highest-degree) little group scaling dependence we
find the associahedron form. This relation exposes the singularities of the respective scat-
tering amplitudes and captures the fact that the factorization channels, corresponding to
vanishing planar Mandelstam variables, are the same.

The relation we found is at the level of differential forms. The most natural and
interesting question is how to relate the geometries themselves: whether there exists a
map which directly connects boundaries of the momentum amplituhedron to boundaries of
the kinematic associahedron. While we understand the relation between boundaries corre-
sponding to multiparticle poles, we lack a systematic understanding of the two-particle pole
boundaries. Indeed, collinear singularities si,i+1 → 0 correspond to one boundary of the
associahedron, while there are two boundaries of the momentum amplituhedron associated
to them, since si,i+1 = 〈ii+ 1〉[ii+ 1]→ 0 can be reached by setting either 〈ii+ 1〉 → 0 or
[ii + 1] → 0, see [18] for details. Related to this, it would be interesting to understand if

6Notice that Ωσ̂ does not depend on particle i which means that there is always at least one canonical
variable which will scale as ti−1

ti+1
or ti+1

ti−1
.
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and how we can interpret the pull-back of the differential form associated to the full super-
amplitude Ωn as the “product” of two geometries: one associated to the projective space
Pn−1 and one associated to the pull-back of the associahedron form ω̃n. Finally, we do not
know how the sum over different helicity sectors of the reduced momentum amplituhedron
form combine to describe the pull-back of the associahedron form from a geometric point
of view. In particular, we do not know whether it is a triangulation or a superposition of
geometries. We leave these important points to future work.
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A Extended Fock-Goncharov parametrization for five-point amplitudes

The λ̃ matrix in the extended Fock-Goncharov parametrization reads

λ̃ =
(
t−1
1 0 t−1

3 λ̃1
3 t
−1
4 λ̃1

4 t
−1
5 λ̃1

5
0 t−1

2 s1,2 t
−1
3 λ̃2

3 t
−1
4 λ̃2

4 t
−1
5 λ̃2

5

)
(A.1)

with

λ̃1
3 = R1234(R1345(R̄1234 + 1)− R̄1234R̄1345)− R̄1234R̄1345

R1234R̄1234((R1234 + 1)R̄1345 −R1345(−R1234R̄1345 + R̄1234(R̄1345 + 1) + 1))
(A.2)

λ̃1
4 = (R̄1234 + 1)(R̄1234(R̄1345 + 1)−R1234(R1345 + 1))

R1234R̄1234((R1234 + 1)R̄1345 −R1345(−R1234R̄1345 + R̄1234(R̄1345 + 1) + 1))
(A.3)

λ̃1
5 = (R̄1234(R̄1345 + 1) + 1)(R1234 − R̄1234)

R1234R̄1234((R1234 + 1)R̄1345 −R1345(−R1234R̄1345 + R̄1234(R̄1345 + 1) + 1))
(A.4)

λ̃2
3 = −s1,2(R1234(R1345(R̄1234 + 1)− R̄1234R̄1345)− R̄1234R̄1345)

R1234R̄1234(R1345 − R̄1345)
(A.5)

λ̃2
4 = s1,2(R1234(R1345 + 1)− R̄1234(R̄1345 + 1))

R1234R̄1234(R1345 − R̄1345)
(A.6)

λ̃2
5 = s1,2(R̄1234 −R1234)

R1234R̄1234(R1345 − R̄1345)
. (A.7)

B Formulae for six-point amplitudes

The arguments of the square roots, ∆1 and ∆2, appearing in the four solutions for the
inverse of the map g6, see (4.23), read explicitly:

∆1 = s2
1,2(s2,3 − s2,3,4)2 + (s2,3(s3,4 − s5,6) + s1,2,3(s2,3,4 − s3,4))2

+ 2s1,2
(
−(s3,4 + s5,6)s2

2,3 + (s3,4(s1,2,3 − 2s5,6) + (s3,4 + s5,6 + s1,2,3)s2,3,4)s2,3

+ s1,2,3(s3,4 − s2,3,4)s2,3,4) , (B.1)

– 21 –



J
H
E
P
0
2
(
2
0
2
1
)
0
4
1

∆2 = (s2,3s5,6 − s6,1s5,6 + s6,1s1,2,3 − s1,2,3s2,3,4 + s4,5(s2,3,4 − s5,6))2

− 4s4,5s5,6s6,1(s2,3 + s5,6 − s1,2,3 − s2,3,4) , (B.2)

while the explicit form for Γ appearing in the solutions for the inverse of the map h6
in (4.26) is

Γ = (s3,4 − s5,6) s5,6s
2
2,3 +

(
s5,6 (s5,6s6,1 + s4,5 (s5,6 − s2,3,4)− s1,2,3 (s6,1 − 2s2,3,4))

− s3,4 (s5,6 (s6,1 + s1,2,3) + s4,5 (s5,6 − s2,3,4) + s1,2,3 (s6,1 + s2,3,4))
)
s2,3

+ s1,2,3
(

(s4,5 − s1,2,3) s2
2,3,4 +

(
− s5,6 (s4,5 + s6,1) + s6,1s1,2,3

+ s3,4 (−s4,5 + 2s6,1 + s1,2,3)
)
s2,3,4 + s3,4 (s4,5s5,6 + s6,1 (s1,2,3 − s5,6))

)
+ s1,2

(
(s4,5 + s1,2,3) s2

2,3,4 −
(
s5,6 (s4,5 − s6,1) + (s6,1 − 2s4,5) s1,2,3

+ s2,3 (s4,5 + s5,6 + s1,2,3)
)
s2,3,4 + s2,3 (s5,6 (s2,3 − s4,5 − s6,1) + s6,1s1,2,3)

)
. (B.3)

C Geometry of the differential form ν6,2

In performing the push-forward (g6)∗ ω6,2 = ν6,2, the square-roots present in the individual
solutions g−1

6,i disappear in the sum over all four solutions, and we obtain

ν6,2 = ν
(A)
6,2 (s1,2, s2,3, s3,4; s4,5, s5,6, s6,1) + ν

(B)
6,2 (s1,2, s4,5, s1,2,3; s3,4, s6,1, s2,3,4)

− ν(A)
6,2 (s4,5, s5,6, s6,1; s1,2, s2,3, s3,4)− ν(B)

6,2 (s3,4, s6,1, s2,3,4; s1,2, s4,5, s1,2,3), (C.1)

where

ν
(A)
6,2 (s1,2, s2,3, s3,4; s4,5, s5,6, s6,1)

= d log s1,2 ∧ d log s3,4 ∧ d log
(
s4,5s6,1
s1,4s5,6

)

+ s2,3
s1,2,3 − s2,3,4

d log
(
s1,2s3,4
s2

2,3

)
∧ d log

(
s1,4
s2,3

)
∧ d log

(
Q

s1,4s5,6

)
, (C.2)

ν
(B)
6,2 (s1,2, s4,5, s1,2,3; s3,4, s6,1, s2,3,4)

= s1,2,3
s1,2,3 − s2,3,4

{[
d log

(
s4,5
s1,2

)
∧ d log (s1,4s2,3)

− d log
(
s1,2
s5,6

)
∧ d log

(
s5,6
s2,3

)]
∧ d logQ

+
[
d log s5,6 ∧ d log

(
s1,2s3,4
s2,3

)
− d log s2,3 ∧ d log

(
s4,5s6,1
s5,6

)]
∧ d log

(
s1,4
Q

)}

+ d log s1,2 ∧ d log s4,5 ∧ d logQ , (C.3)

s1,4 = s2,3 + s5,6 − s1,2,3 − s2,3,4 and Q = s2,3s5,6 − s1,2,3s2,3,4.
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It is easy to verify that ν6,2 has simple poles on all planar two-particle Mandelstam
variables (as expected) as well as on s1,4 and Q. These additional, unexpected poles are
a consequence of the Gram determinant condition for six particles, and are precisely the
denominator factors in the two solutions to the Gram determinant equations given in (4.26).

Taking subsequent residues of ν6,2 produces not only ±1, but also ±2 on zero-
dimensional boundaries, in contradistinction to canonical forms which, by definition, have
residues ±1 on boundaries of zero dimension [6]. One might have expected ν6,2 to be a
canonical form since it is the push-forward of ω6,2 (a canonical form). However, the push-
forward only preserves canonical forms which are top-dimensional [6], and since ω6,2, defined
on L6, is not a top-form, we anticipate that this is the origin of the non-canonical behaviour
of ν6,2. We have also verified that for each individual solution g−1

6,i , ν
(i)
6,2 = (g−1

6,i )∗ω6,2 is
a positive geometry with residues ±1. This suggests the simple interpretation for the
geometry of ν6,2 as the geometric sum of the four positive geometries ν(i)

6,2.
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