83 research outputs found

    Pharmacokinetics of secnidazole in healthy volunteers after single oral dose

    Get PDF
    Introduction: Secnidazole is an anti infective agent which belongs to the 5-nitroimidazole class. Method: The objective of the trial was to characterize the pharmacokinetics of secnidazole after oral administration of a 2g dose, as microgranules formulation in healthy subjects. Blood samples were collected before, 1, 2, 3, 6, 9, 12, 24, 36, 48, 72, 96, 120, 168 and 240 h after dosing. Urines were collected in 24-h-fractions for the first five days and in 48 h-fraction for the last sample. The cumulative urinary excretion was captured for each subject from urine concentration (lg/L). Pharmacokinetic parameters were obtained by a non-compartmental approach (WinNonlin Pharsight). The assay was performed by ultra-performance liquid chromatography coupled with mass spectrometry detection (UPLC-MS/MS, Quattro Premier, Waters) after simple protein precipitation of 50 lL plasma sample. Chromatographic separation was done on a C18 Acquity column (50 mm · 2.1 mm, id 1.7 lm, Waters), in isocratic mode (80% water/0.1% formic acid and 20% acetonitrile). Ornidazole was used as internal standard. The detection was operated in positive mode and multiple reaction monitoring was used for quantification (186 > 128 ion transition for secnidazole). The lower limit of quantification was 10 and 100 lg/L for plasma and urine samples respectively. Results: Sixteen subjects (8 female, 8 male) were included. Population characteristics such as: age ranged from 23 to 50 years (mean ± SD: 38 ± 9.2 years), weight ranged from 51 to 90 Kg (mean ± SD = 64.6 ± 10.1 Kg) and body mass index (BMI) ranged from 19.9 to 24.2 Kg/m 2 (mean ± SD = 21.9 ± 1.5 Kg/m 2 ;). Secnidazole exposure achieved a maximal concentration (Cmax) with a mean of 37.9 ± 8.5 mg/L (range 20–56 mg/L) and at a median time associated with the Cmax (Tmax) of 6 h (range 3–6 h). The area under the curve to the last measurable time (AUC0_t) and the total area under the curve (AUC0_¥) were 1281.9 ± 416.4 mg h/L and 1304.2 ± 444.1 mg h/L (mean ± SD) respectively. The Cl/F and V/F were 1.7 ± 0.5 L/h and 40.2 ± 9.2 L respectively and the elimination half-life (t1/2) was 17.5 ± 4.3 h (mean ± SD). The mean amount of secnidazole excreted in the 168-h urine collection was 310.47 mg (15.5% of the administered dose). For example, for the subject number 5, the observed parameters are: Cmax 37.3 mg/L, Tmax 3 h, AUC0_¥ 1029.5 mg h/L and t1/2 15.6 h. Conclusion: After a 2 g single oral dose, secnidazole presents a good absorption profile and relatively long elimination half life ensuring probable sufficient exposure with once a day administration

    Apparent yield stress in rigid fibre suspensions: the role of attractive colloidal interactions

    Get PDF
    International audienceThis work is focused on the modelling of the shear and normal stresses in fibre suspensions that are subjected to a simple shear flow in the presence of short-range lubrication forces, van der Waals and electrostatic forces, as well as solid friction forces between fibres. All these forces are weighed by the contact probability. The theory is developed for attractive fibres with van der Waals interaction dominating over electrostatic repulsion. The model predicts a simple Bingham law for both the shear stress and the first normal stress difference with the apparent shear and normal yield stresses proportional, respectively, to the second and the third power of particle volume fraction. The model is applied to the experimental data of Rakatekar et al. Adv. Mater 21, 874-878 (2009) and Natale et al. AIChE J. 60, 1476-1487 (2014) on the suspensions of carbon nanotubes dispersed in a Newtonian epoxy resin. It reproduces well the quadratic dependency of the apparent yield stress on particle volume fraction (σ Y ∝φ^2) for average particle aspect ratios of r=160 and 1200, while it underpredicts the power-law exponent for rD80 (always predictingφ^2 behaviour instead of φ^3.2

    Elucidation of the metabolites of the novel psychoactive substance 4-methyl-N-ethyl-cathinone (4-MEC) in human urine and pooled liver microsomes by GC-MS & LC-HR-MS/MS techniques and of its detectability by GC-MS or LC-MS(n) standard screening approaches

    Get PDF
    4-methyl-N-ethcathinone (4-MEC), the N-ethyl homologue of mephedrone, is a novel psychoactive substance of the beta-keto amphetamine (cathinone) group. The aim of the present work was to study the phase I and phase II metabolism of 4-MEC in human urine as well as in pooled human liver microsome (pHLM) incubations. The urine samples were worked up with and without enzymatic cleavage, the pHLM incubations by simple deproteinization. The metabolites were separated and identified by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-high resolution-tandem mass spectrometry (LC-HR-MS/MS). Based on the metabolites identified in urine and/or pHLM, the following metabolic pathways could be proposed: reduction of the keto group, N-deethylation, hydroxylation of the 4-methyl group followed by further oxidation to the corresponding 4-carboxy metabolite, and combinations of these steps. Glucuronidation could only be observed for the hydroxy metabolite. These pathways were similar to those described for the N-methyl homologue mephedrone and other related drugs. In pHLM, all phase I metabolites with the exception of the N-deethyl-dihydro isomers and the 4-carboxy-dihydro metabolite could be confirmed. Glucuronides could not be formed under the applied conditions. Although the taken dose was not clear, an intake of 4-MEC should be detectable in urine by the GC-MS and LC-MS(n) standard urine screening approaches at least after overdose

    Pharmacokinetic analysis of pralidoxime after its intramuscular injection alone or in combination with atropine-avizafone in healthy volunteers

    Get PDF
    BACKGROUND AND PURPOSE Treatment of organophosphate poisoning with pralidoxime needs to be improved. Here we have studied the pharmacokinetics of pralidoxime after its intramuscular injection alone or in combination with avizafone and atropine using an auto-injector device. EXPERIMENTAL APPROACH The study was conducted in an open, randomized, single-dose, two-way, cross-over design. At each period, each subject received either intramuscular injections of pralidoxime (700 mg), or two injections of the combination: pralidoxime (350 mg), atropine (2 mg), avizafone (20 mg). Pralidoxime concentrations were quantified using a validated LC/MS-MS method. Two approaches were used to analyse these data: (i) a non-compartmental approach; and (ii) a compartmental modelling approach. KEY RESULTS The injection of pralidoxime combination with atropine and avizafone provided a higher pralidoxime maximal concentration than that obtained after the injection of pralidoxime alone (out of bioequivalence range), while pralidoxime AUC values were equivalent. Pralidoxime concentrations reached their maximal value earlier after the injection of the combination. According to Akaike and to goodness of fit criteria, the best model describing the pharmacokinetics of pralidoxime was a two-compartment with a zero-order absorption model. When avizafone and atropine were injected with pralidoxime, the best model describing pralidoxime pharmacokinetics becomes a two-compartment with a first-order absorption model. CONCLUSIONS AND IMPLICATIONS The two approaches, non-compartmental and compartmental, showed that the administration of avizafone and atropine with pralidoxime results in a faster absorption into the general circulation and higher maximal concentrations, compared with the administration of pralidoxime alone
    corecore