28 research outputs found

    Brittle Strength of the VVER Pressure Vessel Steels under Operation Conditions

    Get PDF
    Complex of mechanical tests and fractographic studies of various sample types were conducted for VVER pressure vessel steels. The brittle fracture sources (origins) were revealed: “non-metallic inclusions” and “structural boundaries”. The computational-experimental technique for evaluation of the local normal stress parameter that characterizes strength of the origin was performed. Values of the local normal stressfor the “structural boundary” origin type was demonstrated to be decreasing after thermal and radiation embrittlement due to decreasing in cohesive strength of grain boundaries by virtue of thermo- and radiation- stimulated diffusion of the impurities to grains boundaries. Keywords: reactor pressure vessel, fractography, local normal stress, brittle fracture, origi

    Physiological and molecular characterization of compost bacteria antagonistic to soil-borne plant pathogens

    No full text
    Disease suppressive composts have the potential to mitigate the risks associated with chemical pesticides. One of the main characteristics responsible for the suppressive nature of composts is their microbiological populations. To gain insight into the determinants responsible for their suppressive effects, we assayed composts to (i) isolate and identify beneficial antagonistic bacteria, (ii) quantify their antifungal and anti-oomycetal activities, (iii) extract inhibitory compounds produced by the bacteria, and (iv) identify antimicrobial lipopeptides produced by these bacteria. The antagonistic bacteria belonged to the genera Arthrobacter, Pseudomonas, Bacillus, Brevibacillus, Paenibacillus, and Rummeliibacillus and had the ability to antagonise the growth of Fusarium sambucinum, Verticillium dahliae, and (or) Pythium sulcatum. These bacteria produced antimicrobial compounds that affected the mycelial growth and (or) conidial germination of the pathogens. Mass spectrometry analyses showed the presence of various antimicrobial lipopeptides in Bacillus and Bacillus-related spp. extracts, demonstrating that they are responsible, at least in part, for the antagonistic activity of the bacteria. Results from this work provide greater insight into some of the biological, biochemical, and physiological determinants of suppressiveness in composts involved in the control of plant pathogens

    Consolidation of Scientific and Technological Expertise to Assess the Reliability of Reactor Pressure Vessel Embrittlement Prediction in Particular for the Arctic Area Plant (COBRA)

    No full text
    The evaluation and prognosis of reactor pressure vessel (RPV) material embrittlement in WWERs and the allowable period of their safe operation are performed on the basis of impact test results of irradiated surveillance specimens. The main problem concerns the irradiation conditions (irradiation temperature, neutron flux and neutron spectrum) of the surveillance specimens that have not been determined yet with the necessary accuracy. These conditions could differ from the actual RPV wall condition. In particular, the key issue is the possible difference between the irradiation temperature of the surveillance specimens and the actual RPV wall temperature. It is recognized that the direct measurement of the irradiation temperature by thermocouples during reactor operation is the only way to obtain reliable information. In addition, the neutron field's parameters in the surveillance specimens location have not been determined yet with the necessary accuracy. The use of state of the art dosimeters can provide high accuracy in the determination of the neutron exposure level. The COBRA project, which started in August 2000 and had a duration of 3 years, was designed to solve the above-mentioned problems. Surveillance capsules were manufactured which contained state of art dosimeters and temperature monitors (melting alloys). In addition, thermocouples were installed throughout the instrumentation channels of the vessel head to measure directly the irradiation temperature in the surveillance position during reactor operation. The selected reactor for the experiment was the Unit 3 of Kola NPP situated in the arctic area of Russia. Irradiation of capsules and online temperature measurements were performed during one fuel cycle. On the base of statistical processing of thermocouples readings, the temperature of irradiated surveillance specimens in WWER-440/213 reactor can be accepted as 269.5 +- 4oC. Uncertainties were evaluated also with experimental work carried out in the WWRSZ research reactor and by finite element modelling of surveillance capsules. The results obtained show that there is no need to perform temperature correction when surveillance data of irradiated specimens are used for embrittlement assessment of WWER-440(213) reactor pressure vessels. Maximum neutron flux evaluated using detectors, which were placed in the Charpy specimen simulators, equals ~2.7 x 10 12cm -2 s-1 with E>0.5 MeV. It is established that depending on the orientation of the capsules with respect tot the core, the detectors of the standard surveillance capsules can give both overestimated and underestimated neutron flux values, as compared to the actual flux received by the surveillance specimens. The overestimation or underestimation can reach 10%.JRC.F.4-Nuclear design safet
    corecore