769 research outputs found

    Correlation Functions of Coulomb Branch Operators

    Get PDF
    We consider the correlation functions of Coulomb branch operators in four-dimensional N=2 Superconformal Field Theories (SCFTs) involving exactly one anti-chiral operator. These extremal correlators are the "minimal" non-holomorphic local observables in the theory. We show that they can be expressed in terms of certain determinants of derivatives of the four-sphere partition function of an appropriate deformation of the SCFT. This relation between the extremal correlators and the deformed four-sphere partition function is non-trivial due to the presence of conformal anomalies, which lead to operator mixing on the sphere. Evaluating the deformed four-sphere partition function using supersymmetric localization, we compute the extremal correlators explicitly in many interesting examples. Additionally, the representation of the extremal correlators mentioned above leads to a system of integrable differential equations. We compare our exact results with previous perturbative computations and with the four-dimensional tt^* equations. We also use our results to study some of the asymptotic properties of the perturbative series expansions we obtain in N=2 SQCD.Comment: 47 pages, 6 figures. v2: typos corrected and references adde

    Magnetothermal Transport in Spin-Ladder Systems

    Full text link
    We study a theoretical model for the magnetothermal conductivity of a spin-1/2 ladder with low exchange coupling (JΘDJ\ll\Theta_D) subject to a strong magnetic field BB. Our theory for the thermal transport accounts for the contribution of spinons coupled to lattice phonon modes in the one-dimensional lattice. We employ a mapping of the ladder Hamiltonian onto an XXZ spin-chain in a weaker effective field B_{eff}=B-B_{0},where, where B_{0}=(B_{c1}+B_{c2})/2correspondstohalffillingofthespinonband.Thisprovidesalowenergytheoryforthespinonexcitationsandtheircouplingtothephonons.Thecouplingofacousticlongitudinalphononstospinonsgivesrisetohybridizationofspinonsandphonons,andprovidesanenhanced corresponds to half-filling of the spinon band. This provides a low-energy theory for the spinon excitations and their coupling to the phonons. The coupling of acoustic longitudinal phonons to spinons gives rise to hybridization of spinons and phonons, and provides an enhanced Bdependantscatteringofphononsonspinons.Usingamemorymatrixapproach,weshowthattheinterplaybetweenseveralscatteringmechanisms,namely:umklapp,disorderandphononspinoncollisions,dominatestherelaxationofheatcurrent.Thisyieldsmagnetothermaleffectsthatarequalitativelyconsistentwiththethermalconductivitymeasurementsinthespin1/2laddercompound-dependant scattering of phonons on spinons. Using a memory matrix approach, we show that the interplay between several scattering mechanisms, namely: umklapp, disorder and phonon-spinon collisions, dominates the relaxation of heat current. This yields magnetothermal effects that are qualitatively consistent with the thermal conductivity measurements in the spin-1/2 ladder compound {\rm Br_4(C_5H_{12}N)_2}$ (BPCB).Comment: 14 pages, 4 figure

    Nernst Effect as a Signature of Quantum Fluctuations in Quasi-1D Superconductors

    Full text link
    We study a model for the transverse thermoelectric response due to quantum superconducting fluctuations in a two-leg Josephson ladder, subject to a perpendicular magnetic field B and a transverse temperature gradient. The off-diagonal Peltier coefficient (\alpha_{xy}) and the Nernst effect are evaluated as functions of B and the temperature T. The Nernst effect is found to exhibit a prominent peak close to the superconductor-insulator transition (SIT), which becomes progressively enhanced at low T. In addition, we derive a relation to diamagnetic response: \alpha_{xy}= -M/T_0, where M is the equilibrium magnetization and T_0 a plasma energy in the superconducting legs.Comment: An extended (and hopefully more comprehensible) version of an earlier postin

    Colored Non-Crossing Euclidean Steiner Forest

    Full text link
    Given a set of kk-colored points in the plane, we consider the problem of finding kk trees such that each tree connects all points of one color class, no two trees cross, and the total edge length of the trees is minimized. For k=1k=1, this is the well-known Euclidean Steiner tree problem. For general kk, a kρk\rho-approximation algorithm is known, where ρ1.21\rho \le 1.21 is the Steiner ratio. We present a PTAS for k=2k=2, a (5/3+ε)(5/3+\varepsilon)-approximation algorithm for k=3k=3, and two approximation algorithms for general~kk, with ratios O(nlogk)O(\sqrt n \log k) and k+εk+\varepsilon

    Progression of Patient Cohorting in Response to COVID-19 at the Jefferson Methodist Emergency Department

    Get PDF
    While COVID-19 and it’s various complications are a source of a substantial number of Emergency Department (ED) visits, many patients still arrive to the ED for non-COVID-19 indications. Due to pre-existing construction which was halted by the pandemic, external space for a tent configuration was unavailable. In effort to decrease patient, staff and nurse exposure to COVID, a system of cohorting was created to assure uninterrupted service in a manner as safe as possible for all involved. Given the uncertainty of patient volumes and the potential for a high burden of disease similar to our colleagues in New York and New Jersey, this system was created in stages to dynamically flex to the needs of the department

    Correlated disordered interactions on Potts models

    Full text link
    Using a weak-disorder scheme and real-space renormalization-group techniques, we obtain analytical results for the critical behavior of various q-state Potts models with correlated disordered exchange interactions along d1 of d spatial dimensions on hierarchical (Migdal-Kadanoff) lattices. Our results indicate qualitative differences between the cases d-d1=1 (for which we find nonphysical random fixed points, suggesting the existence of nonperturbative fixed distributions) and d-d1>1 (for which we do find acceptable perturbartive random fixed points), in agreement with previous numerical calculations by Andelman and Aharony. We also rederive a criterion for relevance of correlated disorder, which generalizes the usual Harris criterion.Comment: 8 pages, 4 figures, to be published in Physical Review

    Simple Wriggling is Hard unless You Are a Fat Hippo

    Full text link
    We prove that it is NP-hard to decide whether two points in a polygonal domain with holes can be connected by a wire. This implies that finding any approximation to the shortest path for a long snake amidst polygonal obstacles is NP-hard. On the positive side, we show that snake's problem is "length-tractable": if the snake is "fat", i.e., its length/width ratio is small, the shortest path can be computed in polynomial time.Comment: A shorter version is to be presented at FUN 201
    corecore