research

Magnetothermal Transport in Spin-Ladder Systems

Abstract

We study a theoretical model for the magnetothermal conductivity of a spin-1/2 ladder with low exchange coupling (JΘDJ\ll\Theta_D) subject to a strong magnetic field BB. Our theory for the thermal transport accounts for the contribution of spinons coupled to lattice phonon modes in the one-dimensional lattice. We employ a mapping of the ladder Hamiltonian onto an XXZ spin-chain in a weaker effective field B_{eff}=B-B_{0},where, where B_{0}=(B_{c1}+B_{c2})/2correspondstohalffillingofthespinonband.Thisprovidesalowenergytheoryforthespinonexcitationsandtheircouplingtothephonons.Thecouplingofacousticlongitudinalphononstospinonsgivesrisetohybridizationofspinonsandphonons,andprovidesanenhanced corresponds to half-filling of the spinon band. This provides a low-energy theory for the spinon excitations and their coupling to the phonons. The coupling of acoustic longitudinal phonons to spinons gives rise to hybridization of spinons and phonons, and provides an enhanced Bdependantscatteringofphononsonspinons.Usingamemorymatrixapproach,weshowthattheinterplaybetweenseveralscatteringmechanisms,namely:umklapp,disorderandphononspinoncollisions,dominatestherelaxationofheatcurrent.Thisyieldsmagnetothermaleffectsthatarequalitativelyconsistentwiththethermalconductivitymeasurementsinthespin1/2laddercompound-dependant scattering of phonons on spinons. Using a memory matrix approach, we show that the interplay between several scattering mechanisms, namely: umklapp, disorder and phonon-spinon collisions, dominates the relaxation of heat current. This yields magnetothermal effects that are qualitatively consistent with the thermal conductivity measurements in the spin-1/2 ladder compound {\rm Br_4(C_5H_{12}N)_2}$ (BPCB).Comment: 14 pages, 4 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions