We study a theoretical model for the magnetothermal conductivity of a
spin-1/2 ladder with low exchange coupling (J≪ΘD) subject to a strong
magnetic field B. Our theory for the thermal transport accounts for the
contribution of spinons coupled to lattice phonon modes in the one-dimensional
lattice. We employ a mapping of the ladder Hamiltonian onto an XXZ spin-chain
in a weaker effective field B_{eff}=B-B_{0},whereB_{0}=(B_{c1}+B_{c2})/2correspondstohalf−fillingofthespinonband.Thisprovidesalow−energytheoryforthespinonexcitationsandtheircouplingtothephonons.Thecouplingofacousticlongitudinalphononstospinonsgivesrisetohybridizationofspinonsandphonons,andprovidesanenhancedB−dependantscatteringofphononsonspinons.Usingamemorymatrixapproach,weshowthattheinterplaybetweenseveralscatteringmechanisms,namely:umklapp,disorderandphonon−spinoncollisions,dominatestherelaxationofheatcurrent.Thisyieldsmagnetothermaleffectsthatarequalitativelyconsistentwiththethermalconductivitymeasurementsinthespin−1/2laddercompound{\rm
Br_4(C_5H_{12}N)_2}$ (BPCB).Comment: 14 pages, 4 figure