1,954 research outputs found

    The extent of NGC 6822 revealed by its C stars population

    Get PDF
    Using the CFH12K camera, we apply the four band photometric technique to identify 904 carbon stars in an area 28' x 42' centered on NGC 6822. A few C stars, outside of this area were also discovered with the Las Campanas Swope Telescope. The NGC 6822 C star population has an average I of 19.26 mag leading to an average absolute I magnitude of -4.70 mag, a value essentially identical to the mean magnitude obtained for the C stars in IC 1613. Contrary to stars highlighting the optical image of NGC 6822, C stars are seen at large radial distances and trace a huge slightly elliptical halo which do not coincide with the huge HI cloud surrounding NGC6822. The previously unknown stellar component of NGC 6822 has a exponential scale length of 3.0' +/- 0.1' and can be traced to five scale lengths. The C/M ratio of NGC 6822 is evaluated to br 1.0 +/- 0.2.Comment: accepted, to be published in A

    Chaotic, staggered and polarized dynamics in opinion forming: the contrarian effect

    Get PDF
    We revisit the no tie breaking 2-state Galam contrarian model of opinion dynamics for update groups of size 3. While the initial model assumes a constant density of contrarians a for both opinions, it now depends for each opinion on its global support. Proportionate contrarians are thus found to indeed preserve the former case main results. However, restricting the contrarian behavior to only the current collective majority, makes the dynamics more complex with novel features. For a density a<a_c=1/9 of one-sided contrarians, a chaotic basin is found in the fifty-fifty region separated from two majority-minority point attractors, one on each side. For 1/9<a< 0.301 only the chaotic basin survives. In the range a>0.301 the chaotic basin disappears and the majority starts to alternate between the two opinions with a staggered flow towards two point attractors. We then study the effect of both, decoupling the local update time sequence from the contrarian behavior activation, and a smoothing of the majority rule. A status quo driven bias for contrarian activation is also considered. Introduction of unsettled agents driven in the debate on a contrarian basis is shown to only shrink the chaotic basin. The model may shed light to recent apparent contradictory elections with on the one hand very tied results like in US in 2000 and in Germany in 2002 and 2005, and on the other hand, a huge majority like in France in 2002.Comment: 17 pages, 10 figure

    Self-consistency and Symmetry in d-dimensions

    Full text link
    Bethe approximation is shown to violate Bravais lattices translational invariance. A new scheme is then presented which goes over the one-site Weiss model yet preserving initial lattice symmetry. A mapping to a one-dimensional finite closed chain in an external field is obtained. Lattice topology determines the chain size. Using recent results in percolation, lattice connectivity between chains is argued to be (q(d1)2)/(d)(q(d-1)-2)/(d) where qq is the coordination number and dd is the space dimension. A new self-consistent mean-field equation of state is derived. Critical temperatures are thus calculated for a large variety of lattices and dimensions. Results are within a few percent of exact estimates. Moreover onset of phase transitions is found to occur in the range (d1)q>2(d-1)q> 2. For the Ising hypercube it yields the Golden number limit d>(1+5)/(2)d > (1+\sqrt 5)/(2).Comment: 16 pages, latex, Phys. Rev. B (in press

    Universal crossovers and critical dynamics of quantum phase transitions: A renormalization group study of the pseudogap Kondo problem

    Full text link
    The pseudogap Kondo problem, describing a magnetic impurity embedded in an electronic environment with a power-law density of states, displays continuous quantum phase transitions between free and screened moment phases. In this paper we employ renormalization group techniques to analytically calculate universal crossover functions, associated to these transitions, for various observables. Quantitative agreement with the results of Numerical Renormalization Group (NRG) simulations is obtained for temperature-dependent static and zero-temperature dynamic quantities, at and away from criticality. In the notoriously difficult realm of finite-temperature low-frequency dynamics, usually inaccessible to both NRG and perturbative methods, we show that progress can be made by a suitable renormalization procedure in the framework of the Callan-Symanzik equations. Our general strategy can be extended to other zero-temperature phase transitions, both in quantum impurity models and bulk systems.Comment: 19 pages, 18 figures; (v3) version as publishe

    Boundary quantum criticality in models of magnetic impurities coupled to bosonic baths

    Full text link
    We investigate quantum impurity problems, where a local magnetic moment is coupled to the spin density of a bosonic environment, leading to bosonic versions of the standard Kondo and Anderson impurity models. In a physical situation, these bosonic environments can correspond either to deconfined spinons in certain classes of Z_2 frustrated antiferromagnets, or to particles in a multicomponent Bose gase (in which case the spin degree of freedom is attributed to hyperfine levels). Using renormalization group techniques, we establish that our impurity models, which feature an exchange interaction analogous to Kondo impurities in Fermi liquids, allow the flow towards a stable strong-coupling state. Since the low-energy bosons live around a single point in momentum space, and there is no Fermi surface, an impurity quantum phase transition occurs at intermediate coupling, separating screened and unscreened phases. This behavior is qualitatively different from previously studied spin-isotropic variants of the spin-boson model, which display stable intermediate-coupling fixed points and no screening.Comment: 15 pages, 10 fig

    Gravitational waves from inspiraling compact binaries: Second post-Newtonian waveforms as search templates II

    Get PDF
    We present further evidence that the second post-Newtonian (pN) approximation to the gravitational waves emitted by inspiraling compact binaries is sufficient for the detection of these systems. This is established by comparing the 2-pN wave forms to signals calculated from black hole perturbation theory. Results are presented for different detector noise curves. We also discuss the validity of this type of analysis.Comment: 5 pages, 3 Figures, RevTe

    Recurrence in generic staircases

    Full text link
    The straight-line flow on almost every staircase and on almost every square tiled staircase is recurrent. For almost every square tiled staircase the set of periodic orbits is dense in the phase space

    Encryption schemes secure against chosen-ciphertext selective opening attacks

    Get PDF
    Imagine many small devices send data to a single receiver, encrypted using the receiver's public key. Assume an adversary that has the power to adaptively corrupt a subset of these devices. Given the information obtained from these corruptions, do the ciphertexts from uncorrupted devices remain secure? Recent results suggest that conventional security notions for encryption schemes (like IND-CCA security) do not suffice in this setting. To fill this gap, the notion of security against selective-opening attacks (SOA security) has been introduced. It has been shown that lossy encryption implies SOA security against a passive, i.e., only eavesdropping and corrupting, adversary (SO-CPA). However, the known results on SOA security against an active adversary (SO-CCA) are rather limited. Namely, while there exist feasibility results, the (time and space) complexity of currently known SO-C

    Multipartite Nonlocal Quantum Correlations Resistant to Imperfections

    Full text link
    We use techniques for lower bounds on communication to derive necessary conditions in terms of detector efficiency or amount of super-luminal communication for being able to reproduce with classical local hidden-variable theories the quantum correlations occurring in EPR-type experiments in the presence of noise. We apply our method to an example involving n parties sharing a GHZ-type state on which they carry out measurements and show that for local-hidden variable theories, the amount of super-luminal classical communication c and the detector efficiency eta are constrained by eta 2^(-c/n) = O(n^(-1/6)) even for constant general error probability epsilon = O(1)

    Natural hybridization between pen shell species: Pinna rudis and the critically endangered Pinna nobilis may explain parasite resistance in P. nobilis

    Get PDF
    Recently, Pinna nobilis pen shells population in Mediterranean Sea has plummeted due to a Mass Mortality Event caused by an haplosporidian parasite. In consequence, this bivalve species has been included in the IUCN Red List as “Critically Endangered”. In the current scenario, several works are in progress to protect P. nobilis from extinction, being identification of hybrids (P. nobilis x P. rudis) among survivors extremely important for the conservation of the species. Morphological characteristics and molecular analyses were used to identify putative hybrids. A total of 10 individuals of each species (P. nobilis and P. rudis) and 3 doubtful individuals were considered in this study. The putative hybrids showed shell morphology and mantle coloration intermingled exhibiting both P. nobilis and P. rudis traits. Moreover, the analyses of 1150 bp of the 28S gene showed 9 diagnostic sites between P. rudis and P. nobilis, whereas hybrids showed both parental diagnostic alleles at the diagnostic loci. Regarding the multilocus genotypes from the 8 microsatellite markers, the segregation of two Pinna species was clearly detected on the PCoA plot and the 3 hybrids showed intermediate positions. This is the first study evidencing the existence of hybrids P. nobilis x P. rudis, providing molecular methodology for a proper identification of new hybrids. Further studies testing systematically all parasite-resisting isolated P. nobilis should be undertaken to determine if the resistance is resulting from introgression of P. rudis into P. nobilis genome and identifying aspects related to resistance.En prens
    corecore