641 research outputs found

    Fibre Reinforced Geopolymers as Inorganic Strengthening Composites for Masonry Structures

    Get PDF
    The study presents an assessment of externally bonded Fibre-Reinforced GeoPolymers (FRGPs) as strengthening material for masonry structures. Thanks to their tailored chemical and mechanical characteristics, geopolymer matrices can fulfil the restoration criteria for Built Heritage (BH) with the benefit of heat-resistant performances better than those of organic and inorganic matrices used in Externally Bonded Fibre Reinforced Polymers (EB-FRP) and Fabric-Reinforced Cementitious Matrix (FRCM) materials, respectively. This work is built on the outcomes of a previous investigation that proved the suitability of the developed geopolymer matrix for applications on clay bricks, revealing a good adhesion to masonry substrates and to embedded reinforcements. The behaviour of three FRGPs, including either a bi-directional basalt mesh, a bi-directional carbon mesh or a unidirectional Ultra High Strength Steel (UHSS) fabric, was explored by means of local tests on masonry sub-assemblages made of soft-mud clay bricks and hydraulic lime mortar. In overall, 9 single-lap shear tests on single bricks with a bonded length of 200 mm and 9 three-point bending tests on 2-brick slices, connected by a mortar joint and reinforced at the bottom face, were carried out. Lastly, the behaviour in alkaline environments of each reinforcement was investigated through tensile tests on coupons immersed for 28 days in alkaline solutions simulating the conditions of the geopolimeric matrices. Results confirmed the interesting potential of FRGPs for strengthening masonry elements, highlighting a good performance of steel and carbon reinforcements. On the other hand, precautions should be taken with basalt meshes that, as expected, were more sensitive to alkaline environment

    A comparison of electrochemical degradation of phenol on boron doped diamond and lead dioxide anodes

    Get PDF
    This work compares two electrode materials used to mineralize phenol contained in waste waters. Two disks covered with either boron doped diamond (BDD) or PbO2 were used as anodes in a one compartment flow cell under the same hydrodynamic conditions. Efficiencies of galvanostatic electrolyses are compared on the basis of measurements of Total Organic Carbon (TOC) and Chemical Oxygen Demand (COD). Galvanostatic electrolyses were monitored by analysis of phenol and of its oxidation derivatives to evaluate the operating time needed for complete elimination of toxic aromatics. The experimental current efficiency is close to the theoretical value for the BDD electrode. Other parameters being equal, phenol species disappeared at the same rate using the two electrode materials but the BDD anode showed better efficiency to eliminate TOC and COD. Moreover, during the electrolysis less intermediates are formed with BDD compared to PbO2 whatever the current density. A comparison of energy consumption is given based on the criterion of 99% removal of aromatic compounds

    Planting time for maximization of yield of vinegar plant calyx (Hibiscus sabdariffa L.)

    Get PDF
    Objetivou-se avaliar a produtividade de cálices de Hibiscus sabdariffa L., planta medicinal, em quatro épocas de plantio em Lavras M.G. Os tratamentos foram quatro épocas de plantio (18 de outubro; 15 de novembro; 18 de dezembro de 2001 e 15 de janeiro de 2002) e realizada uma colheita quando praticamente não existiam cálices em desenvolvimento, quase no final do ciclo da planta. Foram considerados os números de cálices por planta, as fitomassas frescas e secas dos cálices e a qualidade. Concluiu-se que a época de plantio influenciou o rendimento por planta e as fitomassas frescas e secas dos cálices, diferindo entre si pelo teste de Tukey a 5%. No plantio de outubro, houve maior rendimento (2.522 kg/ha), com produção de 5,24 vezes a mais em relação ao plantio do mês de janeiro (481 kg/ha). Os plantios nos meses de novembro e dezembro tiveram produções de 1.695 e 1.093 kg.ha-1 de cálices secos, respectivamente, e em relação ao mês de janeiro, a produção foi 3,52 e 2,27 vezes a mais.Deve-se realizar a colheita assim que os cálices estiverem maduros, a fim de preservar a qualidade

    Deposition of tin oxide, iridium and iridium oxide films by metal-organic chemical vapor deposition for electrochemical wastewater treatment

    Get PDF
    In this research, the specific electrodes were prepared by metal-organic chemical vapor deposition (MOCVD) in a hot-wall CVD reactor with the presence of O2 under reduced pressure. The Ir protective layer was deposited by using (Methylcyclopentadienyl) (1,5-cyclooctadiene) iridium (I), (MeCp)Ir(COD), as precursor. Tetraethyltin (TET) was used as precursor for the deposition of SnO2 active layer. The optimum condition for Ir film deposition was at 300 °C, 125 of O2/(MeCp)Ir(COD) molar ratio and 12 Torr of total pressure. While that of SnO2 active layer was at 380 °C, 1200 of O2/TET molar ratio and 15 Torr of total pressure. The prepared SnO2/Ir/Ti electrodes were tested for anodic oxidation of organic pollutant in a simple three-electrode electrochemical reactor using oxalic acid as model solution. The electrochemical experiments indicate that more than 80% of organic pollutant was removed after 2.1 Ah/L of charge has been applied. The kinetic investigation gives a two-step process for organic pollutant degradation, the kinetic was zero-order and first-order with respect to TOC of model solution for high and low TOC concentrations, respectively

    Budding yeast ATM/ATR control meiotic double-strand break (DSB) levels by down-regulating Rec114, an essential component of the DSB-machinery

    Get PDF
    An essential feature of meiosis is Spo11 catalysis of programmed DNA double strand breaks (DSBs). Evidence suggests that the number of DSBs generated per meiosis is genetically determined and that this ability to maintain a pre-determined DSB level, or "DSB homeostasis", might be a property of the meiotic program. Here, we present direct evidence that Rec114, an evolutionarily conserved essential component of the meiotic DSB-machinery, interacts with DSB hotspot DNA, and that Tel1 and Mec1, the budding yeast ATM and ATR, respectively, down-regulate Rec114 upon meiotic DSB formation through phosphorylation. Mimicking constitutive phosphorylation reduces the interaction between Rec114 and DSB hotspot DNA, resulting in a reduction and/or delay in DSB formation. Conversely, a non-phosphorylatable rec114 allele confers a genome-wide increase in both DSB levels and in the interaction between Rec114 and the DSB hotspot DNA. These observations strongly suggest that Tel1 and/or Mec1 phosphorylation of Rec114 following Spo11 catalysis down-regulates DSB formation by limiting the interaction between Rec114 and DSB hotspots. We also present evidence that Ndt80, a meiosis specific transcription factor, contributes to Rec114 degradation, consistent with its requirement for complete cessation of DSB formation. Loss of Rec114 foci from chromatin is associated with homolog synapsis but independent of Ndt80 or Tel1/Mec1 phosphorylation. Taken together, we present evidence for three independent ways of regulating Rec114 activity, which likely contribute to meiotic DSBs-homeostasis in maintaining genetically determined levels of breaks

    Shear-banding in a lyotropic lamellar phase, Part 2: Temporal fluctuations

    Full text link
    We analyze the temporal fluctuations of the flow field associated to a shear-induced transition in a lyotropic lamellar phase: the layering transition of the onion texture. In the first part of this work [Salmon et al., submitted to Phys. Rev. E], we have evidenced banded flows at the onset of this shear-induced transition which are well accounted for by the classical picture of shear-banding. In the present paper, we focus on the temporal fluctuations of the flow field recorded in the coexistence domain. These striking dynamics are very slow (100--1000s) and cannot be due to external mechanical noise. Using velocimetry coupled to structural measurements, we show that these fluctuations are due to a motion of the interface separating the two differently sheared bands. Such a motion seems to be governed by the fluctuations of σ\sigma^\star, the local stress at the interface between the two bands. Our results thus provide more evidence for the relevance of the classical mechanical approach of shear-banding even if the mechanism leading to the fluctuations of σ\sigma^\star remains unclear

    Thermodynamics and structure of self-assembled networks

    Full text link
    We study a generic model of self-assembling chains which can branch and form networks with branching points (junctions) of arbitrary functionality. The physical realizations include physical gels, wormlike micells, dipolar fluids and microemulsions. The model maps the partition function of a solution of branched, self-assembling, mutually avoiding clusters onto that of a Heisenberg magnet in the mathematical limit of zero spin components. The model is solved in the mean field approximation. It is found that despite the absence of any specific interaction between the chains, the entropy of the junctions induces an effective attraction between the monomers, which in the case of three-fold junctions leads to a first order reentrant phase separation between a dilute phase consisting mainly of single chains, and a dense network, or two network phases. Independent of the phase separation, we predict the percolation (connectivity) transition at which an infinite network is formed that partially overlaps with the first-order transition. The percolation transition is a continuous, non thermodynamic transition that describes a change in the topology of the system. Our treatment which predicts both the thermodynamic phase equilibria as well as the spatial correlations in the system allows us to treat both the phase separation and the percolation threshold within the same framework. The density-density correlation correlation has a usual Ornstein-Zernicke form at low monomer densities. At higher densities, a peak emerges in the structure factor, signifying an onset of medium-range order in the system. Implications of the results for different physical systems are discussed.Comment: Submitted to Phys. Rev.

    SOLUS: An innovative multimodal imaging system to improve breast cancer diagnosis through diffuse optics and ultrasounds

    Get PDF
    To improve non-invasively the specificity in the diagnosis of breast cancer after a positive screening mammography or doubt/suspicious ultrasound examination, the SOLUS project developed a multimodal imaging system that combines: B-mode ultrasound (US) scans (to assess morphology), Color Doppler (to visualize vascularization), shear-wave elastography (to measure stiffness), and time domain multi-wavelength diffuse optical tomography (to estimate tissue composition in terms of oxy- and deoxy-hemoglobin, lipid, water, and collagen concentrations). The multimodal probe arranges 8 innovative photonic modules (optodes) around the US transducer, providing capability for optical tomographic reconstruction. For more accurate estimate of lesion composition, US-assessed morphological priors can be used to guide the optical reconstructions. Each optode comprises: i) 8 picosecond pulsed laser diodes with different wavelengths, covering a wide spectral range (635-1064 nm) for good probing of the different tissue constituents; ii) a large-area (variable, up to 8.6 mm2) fast-gated digital Silicon Photomultiplier; iii) the acquisition electronics to record the distribution of time-of-flight of the re-emitted photons. The optode is the basic element of the optical part of the system, but is also a stand-alone, ultra-compact (about 4 cm3) device for time domain multi-wavelength diffuse optics, with potential application in various fields

    Water and Us: tales and hands-on laboratories to educate about sustainable and nonconflictual water resources management

    Get PDF
    Climate change and water security are among the grand challenges of the 21st century, but literacy on these matters among high-school students is often unsystematic and/or detached from the real world. This study aims to introduce the educational objectives, methods, and early results of “Water and Us”, a three-module initiative that can contribute to advancing water education in a warming climate by focusing on the natural and anthropogenic water cycle, climate change, and emerging water conflicts. The method of Water and Us revolves around storytelling to aid understanding and generate new knowledge, learning by doing, a flipped-classroom environment, and a constant link to examples from the real world (such as ongoing droughts across the world or seeds of conflict regarding transnational river basins). Water and Us was established in 2021–2022 and, during that school year, involved ≥200 students as part of a proof of concept to test the complete didactic approach using small-scale experiments. Results from ≥40 h of proof-of-concept events confirmed the effectiveness of this approach with respect to conveying the essential elements of the natural and anthropogenic water cycle, the most commonly recurring concepts related to climate change and water as well as the possible conflicts and solutions related to water scarcity in a warming climate. The Water and Us team remains interested in networking with colleagues and potential recipients to upscale and further develop this work.</p
    corecore