17,002 research outputs found
The dynamic analysis of submerged structures
Methods are described by which the dynamic interaction of structures with surrounding fluids can be computed by using finite element techniques. In all cases, the fluid is assumed to behave as an acoustic medium and is initially stationary. Such problems are solved either by explicitly modeling the fluid (using pressure or displacement as the basic fluid unknown) or by using decoupling approximations which take account of the fluid effects without actually modeling the fluid
Tunneling Spectroscopy of Quasiparticle Bound States in a Spinful Josephson Junction
The spectrum of a segment of InAs nanowire, confined between two
superconducting leads, was measured as function of gate voltage and
superconducting phase difference using a third normal-metal tunnel probe.
Sub-gap resonances for odd electron occupancy---interpreted as bound states
involving a confined electron and a quasiparticle from the superconducting
leads, reminiscent of Yu-Shiba-Rusinov states---evolve into Kondo-related
resonances at higher magnetic fields. An additional zero bias peak of unknown
origin is observed to coexist with the quasiparticle bound states.Comment: Supplementary information available here:
https://dl.dropbox.com/u/1742676/Chang_Sup.pd
Purification of genuine multipartite entanglement
In tasks, where multipartite entanglement plays a central role, state
purification is, due to inevitable noise, a crucial part of the procedure. We
consider a scenario exploiting the multipartite entanglement in a
straightforward multipartite purification algorithm and compare it to bipartite
purification procedures combined with state teleportation. While complete
purification requires an infinite amount of input states in both cases, we show
that for an imperfect output fidelity the multipartite procedure exhibits a
major advantage in terms of input states used.Comment: 5 pages, 2 figure
Topological gravity on the lattice
In this paper we show that a particular twist of super
Yang-Mills in three dimensions with gauge group SU(2) possesses a set of
classical vacua corresponding to the space of flat connections of the {\it
complexified} gauge group . The theory also contains a set of
topological observables corresponding to Wilson loops wrapping non-trivial
cycles of the base manifold. This moduli space and set of topological
observables is shared with the Chern Simons formulation of three dimensional
gravity and we hence conjecture that the Yang-Mills theory gives an equivalent
description of the gravitational theory. Unlike the Chern Simons formulation
the twisted Yang-Mills theory possesses a supersymmetric and gauge invariant
lattice construction which then provides a possible non-perturbative definition
of three dimensional gravity.Comment: 10 page
Nonlocality of Majorana modes in hybrid nanowires
Spatial separation of Majorana zero modes distinguishes trivial from topological midgap states and is key to topological protection in quantum computing applications. Although signatures of Majorana zero modes in tunneling spectroscopy have been reported in numerous studies, a quantitative measure of the degree of separation, or nonlocality, of the emergent zero modes has not been reported. Here, we present results of an experimental study of nonlocality of emergent zero modes in superconductor-semiconductor hybrid nanowire devices. The approach takes advantage of recent theory showing that nonlocality can be measured from splitting due to hybridization of the zero mode in resonance with a quantum dot state at one end of the nanowire. From these splittings as well as anticrossing of the dot states, measured for even and odd occupied quantum dot states, we extract both the degree of nonlocality of the emergent zero mode, as well as the spin canting angles of the nonlocal zero mode. Depending on the device measured, we obtain either a moderate degree of nonlocality, suggesting a partially separated Andreev subgap state, or a highly nonlocal state consistent with a well-developed Majorana modeThis research was supported by Microsoft, the Danish National Research Foundation, the European Commission, and the Spanish Ministry of Economy and Competitiveness through Grants No. FIS2015-65706-P, No. FIS2015-64654-P, and No. FIS2016-80434-P (AEI/FEDER, EU), the Ramón y Cajal programme Grant No. RYC-2011-09345, and the María de Maeztu Programme for Units of Excellence in R&D (Grant No. MDM-2014-0377). C.M.M. acknowledges support from the Villum Foundation. M.-T.D. acknowledges support from State Key Laboratory of High Performance Computing, Chin
Thermodynamics of Quantum Hall Ferromagnets
The two-dimensional interacting electron gas at Landau level filling factor
and temperature is a strong ferromagnet; all spins are
completely aligned by arbitrarily weak Zeeman coupling. We report on a
theoretical study of its thermodynamic properties using a many-body
perturbation theory approach and concentrating on the recently measured
temperature dependence of the spin magnetization. We discuss the interplay of
collective and single-particle aspects of the physics and the opportunities for
progress in our understanding of itinerant electron ferromagnetism presented by
quantum Hall ferromagnets.Comment: REVTex, 10 pages, 3 uuencoded, compressed and tarred PostScript
figures appende
The interaction between colloids in polar mixtures above Tc
We calculate the interaction potential between two colloids immersed in an
aqueous mixture containing salt near or above the critical temperature. We find
an attractive interaction far from the coexistence curve due to the combination
of preferential solvent adsorption at the colloids' surface and preferential
ion solvation. We show that the ion-specific interaction strongly depends on
the amount of salt added as well as on the mixture composition. Our results are
in accord with recent experiments. For a highly antagonistic salt of
hydrophilic anions and hydrophobic cations, a repulsive interaction at an
intermediate inter-colloid distance is predicted even though both the
electrostatic and adsorption forces alone are attractive.Comment: 9 pages, 6 figure
- …