2,479 research outputs found

    QSO hosts and environments at z=0.9 to 4.2: JHK images with adaptive optics

    Get PDF
    We have observed nine QSOs with redshifts 0.85 to 4.16 at near-IR wavelengths with the adaptive optics bonnette of the Canada-France-Hawaii telescope. Exposure times ranged from 1500 to 24000s (mostly near 7000s) in J, H, or K bands, with pixels 0.035 arcsec on the sky. The FWHM of the co-added images at the location of the quasars are typically 0.16 arcsec. Including another QSO published previously, we find associated QSO structure in at least eight of ten objects, including the QSO at z = 4.16. The structures seen in all cases include long faint features which appear to be tidal tails. In four cases we have also resolved the QSO host galaxy, but find them to be smooth and symmetrical: future PSF removal may expand this result. Including one object previously reported, of the nine objects with more extended structure, five are radio-loud, and all but one of these appear to be in a dense small group of compact galaxy companions. The radio-quiet objects do not occupy the same dense environments, as seen in the NIR. In this small sample we do not find any apparent trends of these properties with redshift, over the range 0.8 < z < 2.4. The colors of the host galaxies and companions are consistent with young stellar populations at the QSO redshift. Our observations suggest that adaptive optic observations in the visible region will exhibit luminous signatures of the substantial star-formation activity that must be occurring.Comment: 22 pages including 10 tables, plus 11 figures. To appear in A

    Magnetic Behavior in RRhX (R = rare earths; X=B, C) Compounds

    Full text link
    We report on the magnetic behavior of RRhB (R = La, Ce, Pr, Nd, Gd, Tb and Tm) and RRhC (R = La, Ce, Pr and Gd) compounds crystallizing in the cubic perovskite type structure with space group Pm3m. The heat capacity data on Pauli-paramagnetic LaRhB and LaRhC indicate a high frequency vibrating motion of boron and carbon atoms in the unit cell. Ce is in -like nonmagnetic state in both the compounds. Pr compounds show a dominant crystal field effect with a nonmagnetic singlet ground state in PrRhB and a nonmagnetic quadrupolar doublet in PrRhC. Compounds with other rare earths order ferromagnetically at low temperatures except TmRhB in which the zero field evolution of magnetic interactions is relatively more complicated. The electrical resistivity of GdRhB decreases with increasing temperature in the paramagnetic state in the vicinity of T, which is rarely seen in ferromagnets. The behavior is discussed to be arising due to the short range spin fluctuation and a possible contribution from Fermi surface geometry.Comment: 14 Figs and a text fil

    The host galaxies of luminous quasars

    Full text link
    We present results of a deep HST/WFPC2 imaging study of 17 quasars at z~0.4, designed to determine the properties of their host galaxies. The sample consists of quasars with absolute magnitudes in the range -24>M_V>-28, allowing us to investigate host galaxy properties across a decade in quasar luminosity, but at a single redshift. We find that the hosts of all the RLQs, and all the RQQs with nuclear luminosities M_V<-24, are massive bulge-dominated galaxies, confirming and extending the trends deduced from our previous studies. From the best-fitting model host galaxies we have estimated spheroid and black-hole masses, and the efficiency (with respect to Eddington luminosity) with which each quasar is radiating. The largest inferred black-hole mass in our sample is \~3.10^9 M_sun, comparable to those at the centres of M87 and Cygnus A. We find no evidence for super-Eddington accretion in even the most luminous objects. We investigate the role of scatter in the black-hole:spheroid mass relation in determining the ratio of quasar to host-galaxy luminosity, by generating simulated populations of quasars lying in hosts with a Schechter mass function. Within the subsample of the highest luminosity quasars, the observed variation in nuclear-host luminosity ratio is consistent with being the result of the scatter in the black-hole:spheroid relation. Quasars with high nuclear-host ratios can be explained by sub-Eddington accretion onto black holes in the high-mass tail of the black-hole:spheroid relation. Our results imply that, owing to the Schechter cutoff, host mass should not continue to increase linearly with quasar luminosity, at the very highest luminosities. Any quasars more luminous than M_V=-27 should be found in massive elliptical hosts which at the present day would have M_V ~ -24.5.Comment: Accepted for publication in MNRAS. 18 pages; 7 figures and 17 greyscale images are reproduced here at low quality due to space limitations. High-resolution figures are available from ftp://ftp.roe.ac.uk/pub/djef/preprints/floyd2004

    Spatially resolved spectra of 3C galaxy nuclei

    Get PDF
    We present and discuss visible-wavelength long-slit spectra of four low redshift 3C galaxies obtained with the STIS instrument on the Hubble Space Telescope. The slit was aligned with near-nuclear jet-like structure seen in HST images of the galaxies, to give unprecedented spatial resolution of the galaxy inner regions. In 3C 135 and 3C 171, the spectra reveal clumpy emission line structures that indicate outward motions of a few hundred km s1^{-1} within a centrally illuminated and ionised biconical region. There may also be some low-ionisation high-velocity material associated with 3C 135. In 3C 264 and 3C 78, the jets have blue featureless spectra consistent with their proposed synchrotron origin. There is weak associated line emission in the innermost part of the jets with mild outflow velocity. These jets are bright and highly collimated only within a circumnuclear region of lower galaxy luminosity, which is not dusty. We discuss the origins of these central regions and their connection with relativistic jets.Comment: 15 pages incl Tables, 12 diagrams, To appear in A

    Thermodynamic Density Matrix renormalization Group Study of the Magnetic Susceptibility of Half-integer Quantum Spin Chains

    Full text link
    It is shown that White's density matrix renormalization group technique can be adapted to obtain thermodynamic quantities. As an illustration, the magnetic susceptibility of Heisenberg S=1/2 and S=3/2 spin chains are computed. A careful finite size analysis is made to determine the range of temperatures where the results are reliable. For the S=1/2 chain, the comparison with the exact Bethe ansatz curve shows an agreement within 1% down to T=0.05J.Comment: 9 pages, 4 figures. To be published in PR

    Tuning Low Temperature Physical Properties of CeNiGe3_{3} by Magnetic Field

    Full text link
    We have studied the thermal, magnetic, and electrical properties of the ternary intermetallic system CeNiGe3_{3} by means of specific heat, magnetization, and resistivity measurements. The specific heat data, together with the anisotropic magnetic susceptibility, was analyzed on the basis of the point charge model of crystalline electric field. The JJ\,=\,5/2 multiplet of the Ce3+^{3+} is split by the crystalline electric field (CEF) into three Kramers doublets, where the second and third doublet are separated from the first (ground state) doublet by Δ1\Delta_{1} \sim 100\,K and Δ2\Delta_{2} \sim 170\,K, respectively. In zero field CeNiGe3_{3} exhibits an antiferromangeic order below TNT_{N} = 5.0\,K. For \textbf{H}\,\parallel\,\textbf{a} two metamagnetic transitions are clearly evidenced between 2\,\sim\,4\,K from the magnetization isotherm and extended down to 0.4\,K from the magnetoresistance measurements. For \textbf{H}\,\parallel\,\textbf{a}, TNT_{N} shifts to lower temperature as magnetic field increases, and ultimately disappears at HcH_{c} \sim 32.5\,kOe. For H>HcH\,>\,H_{c}, the electrical resistivity shows the quadratic temperature dependence (Δρ=AT2\Delta\rho = A T^{2}). For HHcH \gg H_{c}, an unconventional TnT^{n}-dependence of Δρ\Delta\rho with n>2n > 2 emerges, the exponent nn becomes larger as magnetic field increases. Although the antiferromagnetic phase transition temperature in CeNiGe3_{3} can be continuously suppressed to zero, it provides an example of field tuning that does not match current simple models of Quantum criticality.Comment: accepted PR

    Optical spectroscopy of microquasar candidates at low galactic latitudes

    Get PDF
    We report optical spectroscopic observations of a sample of 6 low-galactic latitude microquasar candidates selected by cross-identification of X-ray and radio point source catalogs for |b|<5 degrees. Two objects resulted to be of clear extragalactic origin, as an obvious cosmologic redshift has been measured from their emission lines. For the rest, none exhibits a clear stellar-like spectrum as would be expected for genuine Galactic microquasars. Their featureless spectra are consistent with being extragalactic in origin although two of them could be also highly reddened stars. The apparent non-confirmation of our candidates suggests that the population of persistent microquasar systems in the Galaxy is more rare than previously believed. If none of them is galactic, the upper limit to the space density of new Cygnus X-3-like microquasars within 15 kpc would be 1.1\times10^{-12} per cubic pc. A similar upper limit for new LS 5039-like systems within 4 kpc is estimated to be 5.6\times10^{-11} per cubic pc.Comment: 7 pages, 7 figures. Published in A&A, see http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2004A%26A...413..309

    Probing the Kinematics of the Narrow-Line Region in Seyfert Galaxies with Slitless Spectroscopy: Observational Results

    Full text link
    We present slitless spectra of 10 Seyfert galaxies observed with the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. The spectra cover the [OIII] 4959, 5007 emission lines at a spectral resolving power of ~9000 and a spatial resolution of 0.1". We compare the slitless spectra with previous HST narrow-band images to determine the velocity shifts and dispersions of the bright emission-line knots in the narrow-line regions (NLRs) of these Seyferts. Many knots are spatially resolved with sizes of tenths of arcsecs, corresponding to tens of pcs, and yet they appear to move coherently with radial velocities between zero and +/- 1200 km/s with respect to the systemic velocities of their hostgalaxies. The knots also show a broad range in velocity dispersion, ranging from ~30 km/s (the velocity resolution) to ~1000 km/s FWHM. Most of the Seyfert galaxies in this sample show an organized flow pattern, with radial velocities near zero at the nucleus (defined by the optical continuum peak) and increasing to maximum blueshifts and redshifts within ~1'' of the nucleus, followed by a decline to the systemic velocity. The emission-line knots also follow a general trend of decreasing velocity dispersion with increasing distance. In the Seyfert 2 galaxies, the presence of blueshifts and redshifts on either side of the nucleus indicates that rotation alone cannot explain the observed radial velocities, and that radial outflow plays an important role. Each of the Seyfert galaxies in this sample (with the exception of Mrk 3) shows a bright, compact (FWHM < 0.5") [O III] knot at the position of its optical nucleus. These nuclear emission-line knots have radial-velocity centroids near zero, but they typically have the highest velocity dispersions.Comment: 28 pages, 5 figures (on 9 pages), accepted for A

    A comparative HST imaging study of the host galaxies of radio-quiet quasars, radio-loud quasars and radio galaxies: Paper I

    Get PDF
    We present the first results from a major HST WFPC2 imaging study aimed at providing the first statistically meaningful comparison of the morphologies, luminosities, scalelengths and colours of the host galaxies of radio-quiet quasars, radio-loud quasars, and radio galaxies. We describe the design of this study and present the images which have been obtained for the first half of our 33-source sample. We find that the hosts of all three classes of luminous AGN are massive elliptical galaxies, with scalelengths ~=10 kpc, and R-K colours consistent with mature stellar populations. Most importantly this is the the first unambiguous evidence that, just like radio-loud quasars, essentially all radio-quiet quasars brighter than M_R = -24 reside in massive ellipticals. This result removes the possibility that radio `loudness' is directly linked to host galaxy morphology, but is however in excellent accord with the black-hole/spheroid mass correlation recently highlighted by Magorrian et al. (1998). We apply the relations given by Magorrian et al. to infer the expected Eddington luminosity of the putative black hole at the centre of each of the spheroidal host galaxies we have uncovered. Comparison with the actual nuclear R-band luminosities suggests that the black holes in most of these galaxies are radiating at a few percent of the Eddington luminosity; the brightest host galaxies in our low-z sample are capable of hosting quasars with M_R = -28, comparable to the most luminous quasars at z = 3. Finally we discuss our host-derived black-hole masses in the context of the radio-luminosity:black-hole mass correlation recently uncovered for nearby galaxies by Franceschini et al. (1998), and the resulting implications for the physical origin of radio loudness.Comment: Submitted for publication in the Astrophysical Journal, 55 pages of latex, plus 12 postscript figures (Figures 1a-1s (greyscales of images and model fits, and Figures 2a-2g (luminosity profiles and model fits) can be downloaded from http://www.roe.ac.uk/astronomy/html/rjm1.shtml
    corecore