32 research outputs found

    Inhibition of STAT3 signaling prevents vascular smooth muscle cell proliferation and neointima formation

    Get PDF
    Dedifferentiation, migration, and proliferation of resident vascular smooth muscle cells (SMCs) are key components of neointima formation after vascular injury. Activation of signal transducer and activator of transcription-3 (STAT3) is suggested to be critically involved in this process, but the complex regulation of STAT3-dependent genes and the functional significance of inhibiting this pathway during the development of vascular proliferative diseases remain elusive. In this study, we demonstrate that STAT3 was activated in neointimal lesions following wire-induced injury in mice. Phosphorylation of STAT3 induced trans-activation of cyclin D1 and survivin in SMCs in vitro and in neointimal cells in vivo, thus promoting proliferation and migration of SMCs as well as reducing apoptotic cell death. WP1066, a highly potent inhibitor of STAT3 signaling, abrogated phosphorylation of STAT3 and dose-dependently inhibited the functional effects of activated STAT3 in stimulated SMCs. The local application of WP1066 via a thermosensitive pluronic F-127 gel around the dilated arteries significantly inhibited proliferation of neointimal cells and decreased the neointimal lesion size at 3 weeks after injury. Even though WP1066 application attenuated the injury-induced up-regulation of the chemokine RANTES at 6 h after injury, there was no significant effect on the accumulation of circulating cells at 1 week after injury. In conclusion, these data identify STAT3 as a key molecule for the proliferative response of SMC and neointima formation. Moreover, inhibition of STAT3 by the potent and specific compound WP1066 might represent a novel and attractive approach for the local treatment of vascular proliferative diseases

    A new class of glycomimetic drugs to prevent free fatty acid-induced endothelial dysfunction

    Get PDF
    Background: Carbohydrates play a major role in cell signaling in many biological processes. We have developed a set of glycomimetic drugs that mimic the structure of carbohydrates and represent a novel source of therapeutics for endothelial dysfunction, a key initiating factor in cardiovascular complications. Purpose: Our objective was to determine the protective effects of small molecule glycomimetics against free fatty acid­induced endothelial dysfunction, focusing on nitric oxide (NO) and oxidative stress pathways. Methods: Four glycomimetics were synthesized by the stepwise transformation of 2,5­dihydroxybenzoic acid to a range of 2,5­substituted benzoic acid derivatives, incorporating the key sulfate groups to mimic the interactions of heparan sulfate. Endothelial function was assessed using acetylcholine­induced, endotheliumdependent relaxation in mouse thoracic aortic rings using wire myography. Human umbilical vein endothelial cell (HUVEC) behavior was evaluated in the presence or absence of the free fatty acid, palmitate, with or without glycomimetics (1µM). DAF­2 and H2DCF­DA assays were used to determine nitric oxide (NO) and reactive oxygen species (ROS) production, respectively. Lipid peroxidation colorimetric and antioxidant enzyme activity assays were also carried out. RT­PCR and western blotting were utilized to measure Akt, eNOS, Nrf­2, NQO­1 and HO­1 expression. Results: Ex vivo endothelium­dependent relaxation was significantly improved by the glycomimetics under palmitate­induced oxidative stress. In vitro studies showed that the glycomimetics protected HUVECs against the palmitate­induced oxidative stress and enhanced NO production. We demonstrate that the protective effects of pre­incubation with glycomimetics occurred via upregulation of Akt/eNOS signaling, activation of the Nrf2/ARE pathway, and suppression of ROS­induced lipid peroxidation. Conclusion: We have developed a novel set of small molecule glycomimetics that protect against free fatty acidinduced endothelial dysfunction and thus, represent a new category of therapeutic drugs to target endothelial damage, the first line of defense against cardiovascular disease

    Bis(4-fluorophenyl)methyl(1H-1,2,4-triazol-1-yl-methyl)germane, a germanium analogue of the agricultural fungicide flusilazole: synthesis and biological properties

    Get PDF
    Bis( 4-fluorophenyl)methyl(l H-1,2,4-triazol-1-yl-methyl)germane (2), a germanium analogue of the agricultural fungicide flusilazole (1), has been synthesized from Cl3_3GeCH2_2CI (3) by both a three-step and a four-step synthesis (3-> (p-F-C6_6H4_4)2_2Ge(CH2_2Cl)Br (4)-> (p-F-C6_6H4_4)2_2Ge(CH2_2CI)CH3_3 (S)-> 2; S ~ (p-F-C6_6H4_4)2_2Ge(CH2_2I)CH3_3 (6)-> l). The fungicidal properties of l have been compared with those of the parent silicon compound 1 (studies on Si/Ge bioisosterism). In various test systems, the SijGe analogues 1 and 2 showed comparable fungicidal properlies (in activity against plant pathogenic fungi: in agar plate diffusion tests and greenhause evaluations; in activity against human pathogenic fungi: in serial dilution tests). In addition, 1 and 2 displayed comparable potencies in respect of sterol biosynthesis inhibition in Sacclulromycopsis üpolytica and Pyricularia oryzae, the mode of action being primarily an inhtbition of oxidative C14-demethylation
    corecore