506 research outputs found

    Figure rotation of dark halos in CDM simulations

    Get PDF
    We investigate the figure rotation of dark matter halos identified in Lambda CDM simulations. We find that when strict criteria are used to select suitable halos for study, 5 of the 222 halos identified in our z=0 simulation output undergo coherent figure rotation over a 5h^{-1}Gyr period. We discuss the effects of varying the selection criteria and find that pattern speeds for a much larger fraction of the halos can be measured when the criteria are relaxed. Pattern speeds measured over a 1h^{-1}Gyr period follow a log-normal distribution, centred at Omega_p = 0.25h rad/Gyr with a maximum value of 0.94h rad/Gyr. Over a 5h^{-1}Gyr period, the average pattern speed of a halo is about 0.1h rad/Gyr and the largest pattern speed found is 0.24h rad/Gyr. Less than half of the selected halos showed alignment between their figure rotation axis and minor axis, the exact fraction being somewhat dependent on how one defines a halo. While the pattern speeds observed are lower than those generally thought capable of causing spiral structure, we note that coherent figure rotation is found over very long periods and argue that further simulations would be required before strong conclusions about spiral structure in all galaxies could be drawn. We find no correlation between halo properties such as total mass and the pattern speed.Comment: accepted to MNRAS, 8 page

    A multi-particle model of the 3C 48 host

    Full text link
    The first successful multi-particle model for the host of the well-known quasi-stellar object (QSO) 3C 48 is reported. It shows that the morphology and the stellar velocity field of the 3C 48 host can be reproduced by the merger of two disk galaxies. The conditions of the interaction are similar to those used for interpreting the appearance of the ''Antennae'' (NGC 4038/39) but seen from a different viewing angle. The model supports the controversial hypothesis that 3C 48A is the second nucleus of a merging galaxy, and it suggests a simple solution for the problem of the missing counter tidal tail.Comment: 5 pages, 5 figures, accepted for publication in A&

    Substructure around M31 : Evolution and Effects

    Get PDF
    We investigate the evolution of a population of 100 dark matter satellites orbiting in the gravitational potential of a realistic model of M31. We find that after 10 Gyr, seven subhalos are completely disrupted by the tidal field of the host galaxy. The remaining satellites suffer heavy mass loss and overall, 75% of the mass initially in the subhalo system is tidally stripped. Not surprisingly, satellites with pericentric radius less than 30 kpc suffer the greatest stripping and leave a complex structure of tails and streams of debris around the host galaxy. Assuming that the most bound particles in each subhalo are kinematic tracers of stars, we find that the halo stellar population resulting from the tidal debris follows an r^{-3.5} density profile at large radii. We construct B-band photometric maps of stars coming from disrupted satellites and find conspicuous features similar both in morphology and brightness to the observed Giant Stream around Andromeda. An assumed star formation efficiency of 5-10% in the simulated satellite galaxies results in good agreement with the number of M31 satellites, the V-band surface brightness distribution, and the brightness of the Giant Stream. During the first 5 Gyr, the bombardment of the satellites heats and thickens the disk by a small amount. At about 5 Gyr, satellite interations induce the formation of a strong bar which, in turn, leads to a significant increase in the velocity dispersion of the disk.Comment: 45 pages, 18 figures. To be submitted to the Astrophysical Journal, version 2.0 : scale height value corrected, references added, and some figures have been modifie

    Searching for Machos (and other Dark Matter Candidates) in a Simulated Galaxy

    Get PDF
    We conduct gravitational microlensing experiments in a galaxy taken from a cosmological N-body simulation. Hypothetical observers measure the optical depth and event rate toward hypothetical LMCs and compare their results with model predictions. Since we control the accuracy and sophistication of the model, we can determine how good it has to be for statistical errors to dominate over systematic ones. Several thousand independent microlensing experiments are performed. When the ``best-fit'' triaxial model for the mass distribution of the halo is used, the agreement between the measured and predicted optical depths is quite good: by and large the discrepancies are consistent with statistical fluctuations. If, on the other hand, a spherical model is used, systematic errors dominate. Even with our ``best-fit'' model, there are a few rare experiments where the deviation between the measured and predicted optical depths cannot be understood in terms of statistical fluctuations. In these experiments there is typically a clump of particles crossing the line of sight to the hypothetical LMC. These clumps can be either gravitationally bound systems or transient phenomena in a galaxy that is still undergoing phase mixing. Substructure of this type, if present in the Galactic distribution of Machos, can lead to large systematic errors in the analysis of microlensing experiments. We also describe how hypothetical WIMP and axion detection experiments might be conducted in a simulated N-body galaxy.Comment: 18 pages of text (LaTeX, AASTeX) with 12 figures. submitted to the Astrophysical Journa

    The dynamics of spiral arms in pure stellar disks

    Full text link
    It has been believed that spirals in pure stellar disks, especially the ones spontaneously formed, decay in several galactic rotations due to the increase of stellar velocity dispersions. Therefore, some cooling mechanism, for example dissipational effects of the interstellar medium, was assumed to be necessary to keep the spiral arms. Here we show that stellar disks can maintain spiral features for several tens of rotations without the help of cooling, using a series of high-resolution three-dimensional NN-body simulations of pure stellar disks. We found that if the number of particles is sufficiently large, e.g., 3×1063\times 10^6, multi-arm spirals developed in an isolated disk can survive for more than 10 Gyrs. We confirmed that there is a self-regulating mechanism that maintains the amplitude of the spiral arms. Spiral arms increase Toomre's QQ of the disk, and the heating rate correlates with the squared amplitude of the spirals. Since the amplitude itself is limited by the value of QQ, this makes the dynamical heating less effective in the later phase of evolution. A simple analytical argument suggests that the heating is caused by gravitational scattering of stars by spiral arms, and that the self-regulating mechanism in pure-stellar disks can effectively maintain spiral arms on a cosmological timescale. In the case of a smaller number of particles, e.g., 3×1053\times 10^5, spiral arms grow faster in the beginning of the simulation (while QQ is small) and they cause a rapid increase of QQ. As a result, the spiral arms become faint in several Gyrs.Comment: 18 pages, 19 figures, accepted for Ap

    The Origin of the Brightest Cluster Galaxies

    Get PDF
    Most clusters and groups of galaxies contain a giant elliptical galaxy in their centres which far outshines and outweighs normal ellipticals. The origin of these brightest cluster galaxies is intimately related to the collapse and formation of the cluster. Using an N-body simulation of a cluster of galaxies in a hierarchical cosmological model, we show that galaxy merging naturally produces a massive, central galaxy with surface brightness and velocity dispersion profiles similar to observed BCG's. To enhance the resolution of the simulation, 100 dark halos at z=2z=2 are replaced with self-consistent disk+bulge+halo galaxy models following a Tully-Fisher relation using 100000 particles for the 20 largest galaxies and 10000 particles for the remaining ones. This technique allows us to analyze the stellar and dark matter components independently. The central galaxy forms through the merger of several massive galaxies along a filament early in the cluster's history. Galactic cannibalism of smaller galaxies through dynamical friction over a Hubble time only accounts for a small fraction of the accreted mass. The galaxy is a flattened, triaxial object whose long axis aligns with the primordial filament and the long axis of the cluster galaxy distribution agreeing with observed trends for galaxy-cluster alignment.Comment: Revised and accepted in ApJ, 25 pages, 10 figures, online version available at http://www.cita.utoronto.ca/~dubinski/bcg

    Influence of baryons on the orbital structure of dark matter haloes

    Full text link
    We explore the dynamical signatures imprinted by baryons on dark matter haloes during the formation process using the OverWhelmingly Large Simulations (OWLS), a set of state-of-the-art high-resolution cosmological hydrodynamical simulations. We present a detailed study of the effects of the implemented feedback prescriptions on the orbits of dark matter particles, stellar particles and subhaloes, analysing runs with no feedback, with stellar feedback and with feedback from supermassive black holes. We focus on the central regions (0.25 r_{200}) of haloes with virial masses ~ 6 x 10^{13} (~ 7 x 10^{11}) Msun/h at z = 0(2). We also investigate how the orbital content (relative fractions of the different orbital types) of these haloes depends on several key parameters such as their mass, redshift and dynamical state. The results of spectral analyses of the orbital content of these simulations are compared, and the change in fraction of box, tube and irregular orbits is quantified. Box orbits are found to dominate the orbital structure of dark matter haloes in cosmological simulations. There is a strong anticorrelation between the fraction of box orbits and the central baryon fraction. While radiative cooling acts to reduce the fraction of box orbits, strong feedback implementations result in a similar orbital distribution to that of the dark matter only case. The orbital content described by the stellar particles is found to be remarkably similar to that drawn from the orbits of dark matter particles, suggesting that either they have forgotten their dynamical history, or that subhaloes bringing in stars are not biased significantly with respect to the main distribution. The orbital content of the subhaloes is in broad agreement with that seen in the outer regions of the particle distributions.Comment: 18 pages, 13 figures, 3 tables. Accepted for publication in MNRA

    Semi-Analytical Models for the Formation of Disk Galaxies: I. Constraints from the Tully-Fisher Relation

    Full text link
    We present new semi-analytical models for the formation of disk galaxies with the purpose of investigating the origin of the near-infrared Tully-Fisher (TF) relation. The models assume that disks are formed by cooling of the baryons inside dark halos with realistic density profiles, and that the baryons conserve their specific angular momentum. Only gas with densities above the critical density given by Toomre's stability criterion is considered eligible for star formation, and a simple recipe for supernovae feedback is included. We emphasize the importance of extracting the proper luminosity and velocity measures from the models, something that has often been ignored in the past. The observed K-band TF relation has a slope that is steeper than simple predictions based on dynamical arguments suggest. Taking the stability related star formation threshold densities into account steepens the TF relation, decreases its scatter, and yields gas mass fractions that are in excellent agreement with observations. In order for the TF slope to be as steep as observed, further physics are required. We argue that the characteristics of the observed near-infrared TF relation do not reflect systematic variations in stellar populations, or cosmological initial conditions, but are governed by feedback. Finally we show that our models provide a natural explanation for the small amount of scatter that makes the TF relation useful as a cosmological distance indicator.Comment: 20 pages, 10 figures. Accepted for publication in Ap

    The fate of the B ball

    Get PDF
    The gauge-mediated SUSY-breaking (GMSB) model needs entropy production at a relatively low temperature in the thermal history of the Universe for the unwanted relics to be diluted. This requires a mechanism for the baryogenesis after the entropy production, and the Affleck and Dine (AD) mechanism is a promising candidate for it. The AD baryogenesis in the GMSB model predicts the existence of the baryonic Q ball, that is the B ball, and this may work as the dark matter in the Universe. In this article, we discuss the stability of the B ball in th presence of baryon-number violating interactions. We find that the evaporation rate increases monotonically with the B-ball charge because the large field value inside the B ball enhances the effect of the baryon-number-violating operators. While there are some difficulties to evaluate the evaporation rate of the B ball, we derive the evaporation time (lifetime) of the B ball for the mass-to-charge ratio \omega_0\gsim 100 \MEV. The lifetime of the B ball and the distortion of the cosmic ray positron flux and the cosmic background radiation from the B ball evaporation give constraints on the baryon number of the B ball and the interaction, if the B ball is the dark matter. We also discuss some unresolved properties of the B ball.Comment: 27 pages incl 8 figs, LaTe
    corecore