1,405 research outputs found

    Status of the CUORE and CUORE-0 experiments at Gran Sasso

    Get PDF
    CUORE is a 741 kg array of TeO2 bolometers for the search of neutrinoless double beta decay in 130Te. The detector is being constructed at the Laboratori Nazionali del Gran Sasso, Italy, where it will start taking data in 2015. If the target background of 0.01 counts/(keV·kg·y) will be reached, in five years of data taking CUORE will have a half life sensitivity of ∼ 1026 y. CUORE-0 is a smaller experiment constructed to test and demonstrate the performances expected for CUORE. The detector is a single tower of 52 CUORE-like bolometers that started taking data in spring 2013. The status and perspectives of the CUORE and CUORE-0 experiments will be presented

    New application of superconductors: high sensitivity cryogenic light detectors

    Get PDF
    In this paper we describe the current status of the CALDER project, which is developing ultra-sensitive light detectors based on superconductors for cryogenic applications. When we apply an AC current to a superconductor, the Cooper pairs oscillate and acquire kinetic inductance, that can be measured by inserting the superconductor in a LC circuit with high merit factor. Interactions in the superconductor can break the Cooper pairs, causing sizable variations in the kinetic inductance and, thus, in the response of the LC circuit. The continuous monitoring of the amplitude and frequency modulation allows to reconstruct the incident energy with excellent sensitivity. This concept is at the basis of Kinetic Inductance Detectors (KIDs), that are characterized by natural aptitude to multiplexed read-out (several sensors can be tuned to different resonant frequencies and coupled to the same line), resolution of few eV, stable behavior over a wide temperature range, and ease in fabrication. We present the results obtained by the CALDER collaboration with 2x2 cm2 substrates sampled by 1 or 4 Aluminum KIDs. We show that the performances of the first prototypes are already competitive with those of other commonly used light detectors, and we discuss the strategies for a further improvement

    Characterization of the KID-Based Light Detectors of CALDER

    Full text link
    The aim of the Cryogenic wide-Area Light Detectors with Excellent Resolution (CALDER) project is the development of light detectors with active area of 5×55\times5 cm2^2 and noise energy resolution smaller than 20 eV RMS, implementing phonon-mediated kinetic inductance detectors. The detectors are developed to improve the background suppression in large-mass bolometric experiments such as CUORE, via the double read-out of the light and the heat released by particles interacting in the bolometers. In this work, we present the characterization of the first light detectors developed by CALDER. We describe the analysis tools to evaluate the resonator parameters (resonant frequency and quality factors) taking into account simultaneously all the resonance distortions introduced by the read-out chain (as the feed-line impedance and its mismatch) and by the power stored in the resonator itself. We detail the method for the selection of the optimal point for the detector operation (maximizing the signal-to-noise ratio). Finally, we present the response of the detector to optical pulses in the energy range of 0-30 keV

    New experimental limits on the alpha decays of lead isotopes

    Full text link
    For the first time a PbWO4 crystal was grown using ancient Roman lead and it was run as a cryogenic detector. Thanks to the simultaneous and independent read-out of heat and scintillation light, the detector was able to discriminate beta/gamma interactions with respect to alpha particles down to low energies. New more stringent limits on the alpha decays of the lead isotopes are presented. In particular a limit of T_{1/2} > 1.4*10^20 y at a 90% C.L. was evaluated for the alpha decay of 204Pb to 200Hg

    High sensitivity phonon-mediated kinetic inductance detector with combined amplitude and phase read-out

    Get PDF
    The development of wide-area cryogenic light detectors with good energy resolution is one of the priorities of next generation bolometric experiments searching for rare interactions, as the simultaneous read-out of the light and heat signals enables background suppression through particle identification. Among the proposed technological approaches for the phonon sensor, the naturally-multiplexed Kinetic Inductance Detectors (KIDs) stand out for their excellent intrinsic energy resolution and reproducibility. To satisfy the large surface requirement (several cm2^2) KIDs are deposited on an insulating substrate that converts the impinging photons into phonons. A fraction of phonons is absorbed by the KID, producing a signal proportional to the energy of the original photons. The potential of this technique was proved by the CALDER project, that reached a baseline resolution of 154±\pm7 eV RMS by sampling a 2×\times2 cm2^2 Silicon substrate with 4 Aluminum KIDs. In this paper we present a prototype of Aluminum KID with improved geometry and quality factor. The design improvement, as well as the combined analysis of amplitude and phase signals, allowed to reach a baseline resolution of 82±\pm4 eV by sampling the same substrate with a single Aluminum KID

    Development of a Li2MoO4 scintillating bolometer for low background physics

    Full text link
    We present the performance of a 33 g Li2MoO4 crystal working as a scintillating bolometer. The crystal was tested for more than 400 h in a dilution refrigerator installed in the underground laboratory of Laboratori Nazionali del Gran Sasso (Italy). This compound shows promising features in the frame of neutron detection, dark matter search (solar axions) and neutrinoless double-beta decay physics. Low temperature scintillating properties were investigated by means of different alpha, beta/gamma and neutron sources, and for the first time the Light Yield for different types of interacting particle is estimated. The detector shows great ability of tagging fast neutron interactions and high intrinsic radiopurity levels (< 90 \muBq/kg for 238-U and < 110 \muBq/kg for 232-Th).Comment: revised versio

    First bolometric measurement of the two neutrino double beta decay of 100^{100}Mo with a ZnMoO4_4 crystals array

    Full text link
    The large statistics collected during the operation of a ZnMoO4_4 array, for a total exposure of 1.3 kg \cdot day of 100^{100}Mo, allowed the first bolometric observation of the two neutrino double beta decay of 100^{100}Mo. The observed spectrum of each crystal was reconstructed taking into account the different background contributions due to environmental radioactivity and internal contamination. The analysis of coincidences between the crystals allowed the assignment of constraints to the intensity of the different background sources, resulting in a reconstruction of the measured spectrum down to an energy of \sim300 keV. The half-life extracted from the data is T1/22ν_{1/2}^{2\nu}= [7.15 ±\pm 0.37 (stat) ±\pm 0.66 (syst)] \cdot 1018^{18} y.Comment: 6 pages, 2 figure, Accepted for publication in Journal of Physics G: Nuclear and Particle Physic

    Energy resolution and efficiency of phonon-mediated Kinetic Inductance Detectors for light detection

    Get PDF
    The development of sensitive cryogenic light detectors is of primary interest for bolometric experiments searching for rare events like dark matter interactions or neutrino-less double beta decay. Thanks to their good energy resolution and the natural multiplexed read-out, Kinetic Inductance Detectors (KIDs) are particularly suitable for this purpose. To efficiently couple KIDs-based light detectors to the large crystals used by the most advanced bolometric detectors, active surfaces of several cm2^2 are needed. For this reason, we are developing phonon-mediated detectors. In this paper we present the results obtained with a prototype consisting of four 40 nm thick aluminum resonators patterned on a 2×\times2 cm2^2 silicon chip, and calibrated with optical pulses and X-rays. The detector features a noise resolution σE=154±7\sigma_E=154\pm7 eV and an (18±\pm2)%\% efficiency.Comment: 5 pages, 5 figure
    corecore