17 research outputs found

    Melusin gene (ITGB1BP2) nucleotide variations study in hypertensive and cardiopathic patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Melusin is a muscle specific signaling protein, required for compensatory hypertrophy response in pressure-overloaded heart. The role of Melusin in heart function has been established both by loss and gain of function experiments in murine models. With the aim of verifying the hypothesis of a potential role of the Melusin encoding gene, <it>ITGB1BP2</it>, in the modification of the clinical phenotype of human cardiomyopathies, we screened the <it>ITGB1BP2 </it>gene looking for genetic variations possibly associated to the pathological phenotype in three selected groups of patients affected by hypertension and dilated or hypertrophic cardiomyopathy</p> <p>Methods</p> <p>We analyzed <it>ITGB1BP2 </it>by direct sequencing of the 11 coding exons and intron flanking sequences in 928 subjects, including 656 hypertensive or cardiopathic patients and 272 healthy individuals.</p> <p>Results</p> <p>Only three nucleotide variations were found in patients of three distinct families: a C>T missense substitution at position 37 of exon 1 causing an amino acid change from His-13 to Tyr in the protein primary sequence, a duplication (IVS6+12_18dupTTTTGAG) near the 5'donor splice site of intron 6, and a silent 843C>T substitution in exon 11.</p> <p>Conclusions</p> <p>The three variations of the <it>ITGB1BP2 </it>gene have been detected in families of patients affected either by hypertension or primary hypertrophic cardiomyopathy; however, a clear genotype/phenotype correlation was not evident. Preliminary functional results and bioinformatic analysis seem to exclude a role for IVS6+12_18dupTTTTGAG and 843C>T in affecting splicing mechanism.</p> <p>Our analysis revealed an extremely low number of variations in the <it>ITGB1BP2 </it>gene in nearly 1000 hypertensive/cardiopathic and healthy individuals, thus suggesting a high degree of conservation of the melusin gene within the populations analyzed.</p

    Myosin binding protein C: implications for signal-transduction

    Get PDF
    Myosin binding protein C (MYBPC) is a crucial component of the sarcomere and an important regulator of muscle function. While mutations in different myosin binding protein C (MYBPC) genes are well known causes of various human diseases, such as hypertrophic (HCM) and dilated (DCM) forms of cardiomyopathy as well as skeletal muscular disorders, the underlying molecular mechanisms remain not well understood. A variety of MYBPC3 (cardiac isoform) mutations have been studied in great detail and several corresponding genetically altered mouse models have been generated. Most MYBPC3 mutations may cause haploinsufficiency and with it they may cause a primary increase in calcium sensitivity which is potentially able to explain major features observed in HCM patients such as the hypercontractile phenotype and the well known secondary effects such as myofibrillar disarray, fibrosis, myocardial hypertrophy and remodelling including arrhythmogenesis. However the presence of poison peptides in some cases cannot be fully excluded and most probably other mechanisms are also at play. Here we shall discuss MYBPC interacting proteins and possible pathways linked to cardiomyopathy and heart failure

    Genetic Association Study Identifies HSPB7 as a Risk Gene for Idiopathic Dilated Cardiomyopathy

    Get PDF
    Dilated cardiomyopathy (DCM) is a structural heart disease with strong genetic background. Monogenic forms of DCM are observed in families with mutations located mostly in genes encoding structural and sarcomeric proteins. However, strong evidence suggests that genetic factors also affect the susceptibility to idiopathic DCM. To identify risk alleles for non-familial forms of DCM, we carried out a case-control association study, genotyping 664 DCM cases and 1,874 population-based healthy controls from Germany using a 50K human cardiovascular disease bead chip covering more than 2,000 genes pre-selected for cardiovascular relevance. After quality control, 30,920 single nucleotide polymorphisms (SNP) were tested for association with the disease by logistic regression adjusted for gender, and results were genomic-control corrected. The analysis revealed a significant association between a SNP in HSPB7 gene (rs1739843, minor allele frequency 39%) and idiopathic DCM (p = 1.06×10−6, OR = 0.67 [95% CI 0.57–0.79] for the minor allele T). Three more SNPs showed p < 2.21×10−5. De novo genotyping of these four SNPs was done in three independent case-control studies of idiopathic DCM. Association between SNP rs1739843 and DCM was significant in all replication samples: Germany (n = 564, n = 981 controls, p = 2.07×10−3, OR = 0.79 [95% CI 0.67–0.92]), France 1 (n = 433 cases, n = 395 controls, p = 3.73×10−3, OR = 0.74 [95% CI 0.60–0.91]), and France 2 (n = 249 cases, n = 380 controls, p = 2.26×10−4, OR = 0.63 [95% CI 0.50–0.81]). The combined analysis of all four studies including a total of n = 1,910 cases and n = 3,630 controls showed highly significant evidence for association between rs1739843 and idiopathic DCM (p = 5.28×10−13, OR = 0.72 [95% CI 0.65–0.78]). None of the other three SNPs showed significant results in the replication stage

    Methods for IPM: advances in the methodological workpackage of PURE

    Full text link
    The overall objective of PURE is to provide practical IPM solutions to reduce dependence on pesticides in selected major farming systems in Europe. This paper summarises methodological advances with regards to the design and assessment of IPM solutions. The presented case studies include major crops (cropping systems based on wheat or maize), field vegetables, orchards, vineyard and Controlled Environment Agriculture systems. - Ecological modelling. A software package (Universal Simulator) for collaborative ecological modelling is now available:http://www.ecolmod.org/. - Modelling for ex-ante and ex post assessment of IPM solutions. A multi-criteria model (DEXIPM) for sustainability assessment of innovative crop protection strategies has been developed along with SYNOPS, a web-based model for scaling up ex-post pesticide risk assessments at the individual crop level to the farm and regional levels. In addition, a model for ex-ante evaluation of IPM solutions is currently under development specifically for orchards (PREMISE). - Multiple pest modelling. An interactive generic modelling platform to help design models that simulate yield losses caused by an injury profile in a given production situation (X-PEST) is currently under development. Moreover, theoretical mathematical modelling approaches are conducted to represent the interactions between generalist biological control agents and multiple pests. - Optimisation techniques. Reinforcement learning methods have been adapted and applied to IPM. Multiobjective optimisation algorithms for model-based design of IPM solutions are being developed. The Graph based Markov Decision Process framework is being used for the optimisation of sequential decisions under uncertainty in a spatial context. - Cost-benefit analysis and consumers' willingness to pay. Cost-benefit analyses are conducted for IPM solutions tested in the PURE project. An experimental approach is planned to characterise consumers' willingness to pay for agricultural goods produced under IPM solutions as a function of their level of information on the mode of production. It is important to state that the methodological breakthroughs produced in this work package will not only benefit to the PURE project, but also aim at contributing to the design of practical IPM solutions to reduce dependence on pesticides for a wider range of farming systems. This is made possible by ensuring as much as possible genericity in the developed approaches. (Texte intégral

    The role of sarcomere gene mutations in patients with idiopathic dilated cardiomyopathy

    No full text
    We investigated a Danish cohort of 31 unrelated patients with idiopathic dilated cardiomyopathy (IDC), to assess the role that mutations in sarcomere protein genes play in IDC. Patients were genetically screened by capillary electrophoresis single strand conformation polymorphism and subsequently by bidirectional DNA sequencing of conformers in the coding regions of MYH7, MYBPC3, TPM1, ACTC, MYL2, MYL3, TNNT2, CSRP3 and TNNI3. Eight probands carried disease-associated genetic variants (26%). In MYH7, three novel mutations were found; in MYBPC3, one novel variant and two known mutations were found; and in TNNT2, a known mutation was found. One proband was double heterozygous. We find evidence of phenotypic plasticity: three mutations described earlier as HCM causing were found in four cases of IDC, with no history of a hypertrophic phase. Furthermore, one pedigree presented with several cases of classic DCM as well as one case with left ventricular non-compaction. Disease-causing sarcomere gene mutations were found in about one-quarter of IDC patients, and seem to play an important role in the causation of the disease. The genetics is as complex as seen in HCM. Thus, our data suggest that a genetic work-up should include screening of the most prominent sarcomere genes even in the absence of a family history of the disease
    corecore