1,269 research outputs found

    Built-in reduction of statistical fluctuations of partitioning objects

    Get PDF
    Our theoretical and numerical investigation of the movement of an object that partitions a microtubule filled with small particles indicates that vibrations warranted by thermal equilibrium are reached only after a time that increases exponentially with the number of particles involved. This points to a basic mechanical process capable of breaching, on accessible time scales, the ultimate ergodic constraints that force randomness on bound microscale and nanoscale systems

    Reduced Density-Matrix Functional Theory: correlation and spectroscopy

    Full text link
    In this work we explore the performance of approximations to electron correlation in reduced density-matrix functional theory (RDMFT) and of approximations to the observables calculated within this theory. Our analysis focuses on the calculation of total energies, occupation numbers, removal/addition energies, and spectral functions. We use the exactly solvable Hubbard molecule at 1/4 and 1/2 filling as test systems. This allows us to analyze the underlying physics and to elucidate the origin of the observed trends. For comparison we also report the results of the GWGW approximation, where the self-energy functional is approximated, but no further hypothesis are made concerning the approximations of the observables. In particular we focus on the atomic limit, where the two sites of the molecule are pulled apart and electrons localize on either site with equal probability, unless a small perturbation is present: this is the regime of strong electron correlation. In this limit, using the Hubbard molecule at 1/2 filling with or without a spin-symmetry-broken ground state, allows us to explore how degeneracies and spin-symmetry breaking are treated in RDMFT. We find that, within the used approximations, neither in RDMFT nor in GWGW the signature of strong correlation are present in the spin-singlet ground state, whereas both give the exact result for the spin-symmetry broken case. Moreover we show how the spectroscopic properties change from one spin structure to the other. Our findings can be generalized to other situations, which allows us to make connections to real materials and experiment

    A new approach for roughness representation within urban dispersion models

    Get PDF
    The effects of green infrastructure on pollutant concentrations are greatly variable, essentially depending on the surrounding built-up environment and on local meteorological conditions. To simulate the effects of the presence of trees at urban scale, a reliable methodology is the Computational Fluid Dynamics (CFD) approach, however it needs high calculation costs. An alternative integral dispersion model is given by provided that a suitable parameterization for vegetation is included. In this work, we have developed and demonstrated a novel methodology, based on aerodynamic parameters, to include the aerodynamic effect of trees in an operational dispersion model, the ADMS-Urban. The aerodynamic parameters were derived using the morphometric method starting from open data containing information on buildings and trees. The new roughness parameter calculation method has produced the urban spatially varying roughness (USVR) and it was evaluated in different scenarios at the urban and neighborhood scale. The numerical outputs of the simulations were compared with observations from reference air quality stations collected within an ad-hoc intensive field campaign conducted in 2017 in the city of Bologna, Italy. The results of the comparison highlight that the introduction of the aerodynamic effects of buildings lead to great improvements in the performance of the model at both spatial scales and for the different study sites considered in this study. Conversely, the inclusion of trees in the calculation produces significant improvements only when conducting studies at high spatial resolution and for densely vegetated areas

    Reliability of third-order moment parameterization for models of turbulent boundary layer over gentle topography

    Get PDF
    An analysis is made of the transport equation of Reynolds shear stress, written in a streamline coordinate system, starting from the fields of first- and secondorder moments of wind velocity, measured in a terrain-following system over gentle topography, in order to verify the usual parameterizations of third-order moments. The equation is split into two parts: the first contains the terms which can be calculated directly from measurements, the second involves the pressure-velocity correlation considering the terms of rapid distortion, curvature and return to isotropy and the transport of triple velocity-correlation modelled assuming a flux-gradient approximation. Moreover, the error estimates associated with both parts have been computed using a Monte Carlo technique which takes into account the experimental errors. This analysis is performed on wind tunnel data over a gently shaped two-dimensional valley and hill. The comparison between the measured and modelled parts is good near the surface, whereas, at higher levels, where the pertubations induced by the topography are significant, there are large zones generally characterized by streamlines with concave curvature in which the flux-gradient approximation used to compute the triple product correlation cannot be applied

    Structure of Turbulence in Katabatic Flows below and above the Wind-Speed Maximum

    Full text link
    Measurements of small-scale turbulence made over the complex-terrain atmospheric boundary layer during the MATERHORN Program are used to describe the structure of turbulence in katabatic flows. Turbulent and mean meteorological data were continuously measured at multiple levels at four towers deployed along the East lower slope (2-4 deg) of Granite Mountain. The multi-level observations made during a 30-day long MATERHORN-Fall field campaign in September-October 2012 allowed studying of temporal and spatial structure of katabatic flows in detail, and herein we report turbulence and their variations in katabatic winds. Observed vertical profiles show steep gradients near the surface, but in the layer above the slope jet the vertical variability is smaller. It is found that the vertical (normal to the slope) momentum flux and horizontal (along the slope) heat flux in a slope-following coordinate system change their sign below and above the wind maximum of a katabatic flow. The vertical momentum flux is directed downward (upward) whereas the horizontal heat flux is downslope (upslope) below (above) the wind maximum. Our study therefore suggests that the position of the jet-speed maximum can be obtained by linear interpolation between positive and negative values of the momentum flux (or the horizontal heat flux) to derive the height where flux becomes zero. It is shown that the standard deviations of all wind speed components (therefore the turbulent kinetic energy) and the dissipation rate of turbulent kinetic energy have a local minimum, whereas the standard deviation of air temperature has an absolute maximum at the height of wind-speed maximum. We report several cases where the vertical and horizontal heat fluxes are compensated. Turbulence above the wind-speed maximum is decoupled from the surface, and follows the classical local z-less predictions for stably stratified boundary layer.Comment: Manuscript submitted to Boundary-Layer Meteorology (05 December 2014

    Screened extended Koopmans' theorem: photoemission at weak and strong correlation

    Full text link
    By introducing electron screening in the extended Koopmans' theorem we correctly describe the band gap opening in weakly as well as strongly correlated systems. We show this by applying our method to bulk LiH, Si, and paramagnetic as well as antiferromagnetic NiO. Although incorrect features remain in the full photoemission spectra, this is a remarkable result for an ab-initio electronic structure method and it opens the way to a unified description of photoemission spectra at weak and strong correlation

    Evaporating waterbody effects in a simplified urban neighbourhood: A RANS analysis

    Get PDF
    The incorporation of nature-based solutions comprising green and blue infrastructure is often touted as a way to cool cities and enhance pollutant removal. However, there is little agreement between different methodologies to measure the effect of any single intervention. Here, we present 3D steady RANS simulations to investigate the influence of waterbody on in-canyon flow structure, temperature (T*) and water vapour (!*) distribution in a simplified urban neighbourhood. A novel solver that captures evaporation effects is developed and validated against wind tunnel experiments. Simulations are performed under neutral atmospheric conditions for forced -and mixed-convection cases and different air-water temperature differences, indicative of either daytime or night-time conditions. Results under forced convection show minimal impact on the flow structure, whilst T* and !* effects are distributed primarily over and around the water surface. However, the mixed-convection case shows that a cooler waterbody weakens the principal vortex in the open square, whilst T* and !* effects reach further upwind and are more widely distributed in the spanwise direction. A warmer waterbody is shown to disrupt the skimming flow structure, indicating a possible heat and pollutant removal mechanism from around the waterbody and also downwind canyons

    Evaluation of three new surface irrigation parameterizations in the WRF-ARW v3.8.1 model: the Po Valley (Italy) case study

    Get PDF
    Abstract. Irrigation is a method of land management that can affect the local climate. Recent literature shows that it affects mostly the near-surface variables and it is associated with an irrigation cooling effect. However, there is no common parameterization that also accounts for a realistic water amount, and this factor could ascribe one cause to the different impacts found in previous studies. This work aims to introduce three new surface irrigation parameterizations within the WRF-ARW model (v3.8.1) that consider different evaporative processes. The parameterizations are tested on one of the regions where global studies disagree on the signal of irrigation: the Mediterranean area and in particular the Po Valley. Three sets of experiments are performed using the same irrigation water amount of 5.7 mm d−1, derived from Eurostat data. Two complementary validations are performed for July 2015: monthly mean, minimum, and maximum temperature with ground stations and potential evapotranspiration with the MODIS product. All tests show that for both mean and maximum temperature, as well as potential evapotranspiration simulated fields approximate observation-based values better when using the irrigation parameterizations. This study addresses the sensitivity of the results to human-decision assumptions of the parameterizations: start time, length, and frequency. The main impact of irrigation on surface variables such as soil moisture is due to the parameterization choice itself affecting evaporation, rather than the timing. Moreover, on average, the atmosphere and soil variables are not very sensitive to the parameterization assumptions for realistic timing and length

    Effects of anthropogenic heat due to air-conditioning systems on an extreme high temperature event in Hong Kong

    Get PDF
    Anthropogenic heat flux is the heat generated by human activities in the urban canopy layer, which is considered the main contributor to the urban heat island (UHI). The UHI can in turn increase the use and energy consumption of air-conditioning systems. In this study, two effective methods for water-cooling air-conditioning systems in non-domestic areas, including the direct cooling system and central piped cooling towers (CPCTs), are physically based, parameterized, and implemented in a weather research and forecasting model at the city scale of Hong Kong. An extreme high temperature event (June 23-28, 2016) in the urban areas was examined, and we assessed the effects on the surface thermal environment, the interaction of sea-land breeze circulation and urban heat island circulation, boundary layer dynamics, and a possible reduction of energy consumption. The results showed that both water-cooled air-conditioning systems could reduce the 2 m air temperature by around 0.5 degrees C-0.8 degrees C during the daytime, and around 1.5 degrees C around 7:00-8:00 pm when the planetary boundary layer (PBL) height was confined to a few hundred meters. The CPCT contributed around 80%-90% latent heat flux and significantly increased the water vapor mixing ratio in the atmosphere by around 0.29 g kg(-1) on average. The implementation of the two alternative air-conditioning systems could modify the heat and momentum of turbulence, which inhibited the evolution of the PBL height (a reduction of 100-150m), reduced the vertical mixing, presented lower horizontal wind speed and buoyant production of turbulent kinetic energy, and reduced the strength of sea breeze and UHI circulation, which in turn affected the removal of air pollutants. Moreover, the two alternative air-conditioning systems could significantly reduce the energy consumption by around 30% during extreme high temperature events. The results of this study suggest potential UHI mitigation strategies and can be extended to other megacities to enable them to be more resilient to UHI effects.
    • 

    corecore