185 research outputs found

    Small-Angle Neutron Scattering and Magnetization Study of HoNi2B2C

    Get PDF
    The superconducting and magnetic properties of HoNi2B2C single crystals are investigated through transport, magnetometry and small-angle neutron scattering measurements. In the magnetic phases that enter below the superconducting critical temperature, the small-angle neutron scattering data uncover networks of magnetic surfaces. These likely originate from uncompensated moments e.g. at domain walls pinned to crystallographic grain boundaries. The field and temperature dependent behaviour appears consistent with the metamagnetic transitions reported in earlier works.Comment: 11 pages , 4 figures, submitted to Low Temperature Physic

    The role of secondary Reggeons in central meson production

    Full text link
    We estimate the contribution of f_2 trajectory exchange to the central \eta and \eta^\prime production. It is shown that secondary Reggeons may give a large contribution to processes of double diffractive meson production at high energy.Comment: 7 pages, Latex, 5 figure

    Vortex studies in superconducting Ba(Fe0.93Co0.07)2As2

    Full text link
    We present small-angle neutron scattering (SANS) and Bitter decoration studies of the superconducting vortices in Ba(Fe0.93_{0.93}Co0.07_{0.07})2_2As2_2}. A highly disordered vortex configuration is observed at all measured fields, and is attributed to strong pinning. This conclusion is supported by the absence of a Meissner rim in decoration images obtained close to the sample edge. The field dependence of the magnitude of the SANS scattering vector indicates vortex lattice domains of (distorted) hexagonal symmetry, consistent with the decoration images which show primarily 6-fold coordinated vortex domains. An analysis of the scattered intensity shows that this decreases much more rapidly than expected from estimates of the upper critical field, consistent with the large degree of disorder.Comment: 5 pages, 4 figure

    GCIP water and energy budget synthesis (WEBS)

    Get PDF
    As part of the World Climate Research Program\u27s (WCRPs) Global Energy and Water-Cycle Experiment (GEWEX) Continental-scale International Project (GCIP), a preliminary water and energy budget synthesis (WEBS) was developed for the period 1996–1999 from the “best available” observations and models. Besides this summary paper, a companion CD-ROM with more extensive discussion, figures, tables, and raw data is available to the interested researcher from the GEWEX project office, the GAPP project office, or the first author. An updated online version of the CD-ROM is also available at http://ecpc.ucsd.edu/gcip/webs.htm/. Observations cannot adequately characterize or “close” budgets since too many fundamental processes are missing. Models that properly represent the many complicated atmospheric and near-surface interactions are also required. This preliminary synthesis therefore included a representative global general circulation model, regional climate model, and a macroscale hydrologic model as well as a global reanalysis and a regional analysis. By the qualitative agreement among the models and available observations, it did appear that we now qualitatively understand water and energy budgets of the Mississippi River Basin. However, there is still much quantitative uncertainty. In that regard, there did appear to be a clear advantage to using a regional analysis over a global analysis or a regional simulation over a global simulation to describe the Mississippi River Basin water and energy budgets. There also appeared to be some advantage to using a macroscale hydrologic model for at least the surface water budgets

    The effect of the noncentral impurity-matrix interaction upon the thermal expansion and polyamorphism of solid CO-C60 solutions at low temperatures

    Get PDF
    Orientational glasses with CO molecules occupying 26% and 90% of the octahedral interstitial sites in the C60 lattice have been investigated by the dilatometric method in a temperature interval of 2.5 - 23 K. At temperatures 4 - 6 K the glasses undergo a first-order phase transition which is evident from the hysteresis of the thermal expansion and the maxima in the temperature dependences of the linear thermal expansion coefficients, and the thermalization times of the samples. The effect of the noncentral CO-C60 interaction upon the thermal expansion and the phase transition in these glasses was clarified by comparing the behavior of the properties of the CO-C60 and N2-C60 solutions.Comment: 11 pages, 7 figure

    Observation of the magnetic domain structures in Cu0,47_{0,47}Ni0,53_{0,53} thin films at low temperatures

    Full text link
    We report on the first experimental visualization of domain structure in films of weakly ferromagnetic Cu0,47_{0,47}Ni0,53_{0,53} alloy with different thickness at liquid helium temperatures. Improved high-resolution Bitter decoration technique was used to map the magnetic contrast on the top of the films well below the Curie temperature TCurie_{Curie} (\sim 60 K). In contrast to magnetic force microscopy, this technique allowed visualization of the domain structure without its disturbance while the larger areas of the sample were probed. Maze-like domain patterns, typical for perpendicular magnetic anisotropy, were observed. The average domain width was found to be about 100 nm.Comment: 4 pages, 5 figures, will be published in JETP Let

    Effect of electron irradiation on vortex dynamics in YBa_2Cu_3O_{7-x} single crystals

    Full text link
    We report on drastic change of vortex dynamics with increase of quenched disorder: for rather weak disorder we found a single vortex creep regime, which we attribute to a Bragg-glass phase, while for enhanced disorder we found an increase of both the depinning current and activation energy with magnetic field, which we attribute to entangled vortex phase. We also found that introduction of additional defects always increases the depinning current, but it increases activation energy only for elastic vortex creep, while it decreases activation energy for plastic vortex creep.Comment: 4 pages, 3 figures, submited to Phys. Rev.

    The effect of the noncentral impurity-matrix interaction upon the thermal expansion and polyamorphism of solid CO–C₆₀ solutions at low temperatures

    No full text
    Orientational glasses with CO molecules occupying 26 and 90% of the octahedral interstitial sites in the C₆₀ lattice have been investigated by the dilatometric method in a temperature interval of 2.5–22 K. At temperatures 4–6 K the glasses undergo a first-order phase transition which is evident from the hysteresis of the thermal expansion and the maxima in the temperature dependences of the linear thermal expansion coefficients α (T), and the thermalization times τ₁(T) of the samples. The effect of the noncentral CO–C₆₀ interaction upon the thermal expansion and the phase transition in these glasses was clarified by comparing the behavior of the properties of the CO–C₆₀ and N₂–C₆₀ solutions

    Impurity Effect on the In-plane Penetration Depth of the Organic Superconductors κ\kappa-(BEDT-TTF)2X_2X (XX = Cu(NCS)2_2 and Cu[N(CN)2_2]Br)

    Full text link
    We report the in-plane penetration depth λ\lambda_{\parallel} of single crystals κ\kappa-(BEDT-TTF)2X_2X (X=X= Cu(NCS)2_2 and Cu[N(CN)2_2]Br) by means of the reversible magnetization measurements under the control of cooling-rate. In XX = Cu(NCS)2_2, λ(0)\lambda_{\parallel}(0) as an extrapolation toward TT = 0 K does not change by the cooling-rate within the experimental accuracy, while TcT_{\textrm{c}} is slightly reduced. On the other hand, in XX = Cu[N(CN)2_2]Br, λ(0)\lambda_{\parallel}(0) indicates a distinct increase by cooling faster. The different behavior of λ(0)\lambda_{\parallel}(0) on cooling-rate between the two salts is quantitatively explained in terms of the local-clean approximation (London model), considering that the former salt belongs to the very clean system and the later the moderate clean one. The good agreement with this model demonstrates that disorders of ethylene-group in BEDT-TTF introduced by cooling faster increase the electron(quasiparticle)-scattering, resulting in shorter mean free path.Comment: 8 pages, 9 figure
    corecore