576 research outputs found

    Low-energy fusion caused by an interference

    Full text link
    Fusion of two deuterons of room temperature energy is studied. The nuclei are in vacuum with no connection to any external source (electric or magnetic field, illumination, surrounding matter, traps, etc.) which may accelerate them. The energy of the two nuclei is conserved and remains small during the motion through the Coulomb barrier. The penetration through this barrier, which is the main obstacle for low-energy fusion, strongly depends on a form of the incident flux on the Coulomb center at large distances from it. In contrast to the usual scattering, the incident wave is not a single plane wave but the certain superposition of plane waves of the same energy and various directions, for example, a convergent conical wave. As a result of interference, the wave function close to the Coulomb center is determined by a cusp caustic which is probed by de Broglie waves. The particle flux gets away from the cusp and moves to the Coulomb center providing a not small probability of fusion (cusp driven tunneling). Getting away from a caustic cusp also occurs in optics and acoustics

    Classical Logical versus Quantum Conceptual Thought: Examples in Economics, Decision theory and Concept Theory

    Full text link
    Inspired by a quantum mechanical formalism to model concepts and their disjunctions and conjunctions, we put forward in this paper a specific hypothesis. Namely that within human thought two superposed layers can be distinguished: (i) a layer given form by an underlying classical deterministic process, incorporating essentially logical thought and its indeterministic version modeled by classical probability theory; (ii) a layer given form under influence of the totality of the surrounding conceptual landscape, where the different concepts figure as individual entities rather than (logical) combinations of others, with measurable quantities such as 'typicality', 'membership', 'representativeness', 'similarity', 'applicability', 'preference' or 'utility' carrying the influences. We call the process in this second layer 'quantum conceptual thought', which is indeterministic in essence, and contains holistic aspects, but is equally well, although very differently, organized than logical thought. A substantial part of the 'quantum conceptual thought process' can be modeled by quantum mechanical probabilistic and mathematical structures. We consider examples of three specific domains of research where the effects of the presence of quantum conceptual thought and its deviations from classical logical thought have been noticed and studied, i.e. economics, decision theory, and concept theories and which provide experimental evidence for our hypothesis.Comment: 14 page

    Associative strength and semantic activation in the mental lexicon: evidence from continued word associations

    Get PDF
    In a word association task, the probability of producing a certain response to a cue is considered to be a direct measure of associative strength between words in the mental lexicon. The common single word association procedure is limited, since the number of words connected to a cue might be underestimated when a single response is asked. The continued association task overcomes this limitation by asking a person to generate multiple associative responses. To test whether continued strengths allow a better approximation of our lexicon, an experiment was conducted in which participants judged the associative strength between words. Our results show that in contrast to other semantic tasks, continued strength predicts weak to moderate judgments only. Two explanations based on the sampling of information and differential semantic activation of later responses in continued association are proposed. Theoretical implications for semantic activation and methodological implications for derivation of strength are discussed.Simon De Deyne, Daniel J. Navarro, Gert Stormshttp://cognitivesciencesociety.org/conference2013/index.htm

    Strong structure in weak semantic similarity: a graph based account

    Get PDF
    Research into word meaning and similarity structure typically focus on highly related entities like CATS and MICE. However, most items in the world are only weakly related. Does our representation of the world encode any information about these weak relationships? Using a three-alternative forced-choice similarity task, we investigate to what extent people agree on the relationships underlying words that are only weakly related. These experiments show systematic preferences about which items are perceived as most similar. A similarity measure based on semantic network graphs gives a good account for human ratings of weak similarity.Simon De Deyne, Daniel J. Navarro, Amy Perfors and Gert Storm

    Calcium buffering is required to maintain bone stiffness in saline solution

    Get PDF
    This work determined whether mineral dissolution due to prolonged testing or storage of bone s~\u27imens in normal salint: would alter Lheir elastic modulus. In one experiment, small pieces of equine third metacarpal bone were soaked in normal saline supplemented with varying amounts of CaCI1. Changing Ca ion concentrations in the bath were monitored and the equilibrium concentration was determined. In a second experiment, the elastic moduli of twenty 4 x 10 x 100 mm equine third metacarpal beams were determined non-destructively in four-point bending. Half the beams were then soaked for 10 days in normal saline, and the other half in saline buffered to the bone mineral equilibrium point with Ca ions. Modulus measurements were repeated at 6 and 10 days. The oquilibrium Ca ion con.centration for bone specimens was found to be 57.5 mgl - •. The modulus of bone specimens soaked in normal saline significantly diminished 2.4%, whereas the modulus of those soaked in calcium-buffered saline did not change significantly

    Quantum Experimental Data in Psychology and Economics

    Full text link
    We prove a theorem which shows that a collection of experimental data of probabilistic weights related to decisions with respect to situations and their disjunction cannot be modeled within a classical probabilistic weight structure in case the experimental data contain the effect referred to as the 'disjunction effect' in psychology. We identify different experimental situations in psychology, more specifically in concept theory and in decision theory, and in economics (namely situations where Savage's Sure-Thing Principle is violated) where the disjunction effect appears and we point out the common nature of the effect. We analyze how our theorem constitutes a no-go theorem for classical probabilistic weight structures for common experimental data when the disjunction effect is affecting the values of these data. We put forward a simple geometric criterion that reveals the non classicality of the considered probabilistic weights and we illustrate our geometrical criterion by means of experimentally measured membership weights of items with respect to pairs of concepts and their disjunctions. The violation of the classical probabilistic weight structure is very analogous to the violation of the well-known Bell inequalities studied in quantum mechanics. The no-go theorem we prove in the present article with respect to the collection of experimental data we consider has a status analogous to the well known no-go theorems for hidden variable theories in quantum mechanics with respect to experimental data obtained in quantum laboratories. For this reason our analysis puts forward a strong argument in favor of the validity of using a quantum formalism for modeling the considered psychological experimental data as considered in this paper.Comment: 15 pages, 4 figure

    Experimental Evidence for Quantum Structure in Cognition

    Full text link
    We proof a theorem that shows that a collection of experimental data of membership weights of items with respect to a pair of concepts and its conjunction cannot be modeled within a classical measure theoretic weight structure in case the experimental data contain the effect called overextension. Since the effect of overextension, analogue to the well-known guppy effect for concept combinations, is abundant in all experiments testing weights of items with respect to pairs of concepts and their conjunctions, our theorem constitutes a no-go theorem for classical measure structure for common data of membership weights of items with respect to concepts and their combinations. We put forward a simple geometric criterion that reveals the non classicality of the membership weight structure and use experimentally measured membership weights estimated by subjects in experiments to illustrate our geometrical criterion. The violation of the classical weight structure is similar to the violation of the well-known Bell inequalities studied in quantum mechanics, and hence suggests that the quantum formalism and hence the modeling by quantum membership weights can accomplish what classical membership weights cannot do.Comment: 12 pages, 3 figure

    Development of a Low-Resource Combined Gamma-Ray and Neutron Spectrometer for Planetary Science

    Get PDF
    Planetary neutron and gamma-ray spectroscopy (NGRS) has become a standard technique to measure distinctive geochemical composition and volatile abundance signatures for key elements relevant to planetary structure and evolution. Previous NGRS measurements have led to the discovery of the concentration of many elements including hydrogen on the Moon, Mars, Mercury, and the asteroids Eros, Vesta, and Ceres, but by utilizing separate NGRS. We have developed the Elpasolite Planetary Ice and Composition Spectrometer (EPICS) instrument, an innovative and combined NGRS with low resource requirements. EPICS incorporates elpasolite scintillator read out by silicon photomultipliers (SiPMs) to provide significant reduction in size, weight, and power, while achieving excellent neutron detection sensitivity and gamma-ray energy resolution as good as 2.9% full-width half-maximum at 662 keV. EPICS is ideally suited to resource constrained missions and is applicable to numerous targets such as the Moon, Mars, and small planetary bodies. An overview of the EPICS instrument and its simulated performance on a few notional missions is presented. We have integrated and done performance testing of a prototype of the EPICS instrument, including optimization of an amplification and summing circuit for a 64-element SiPM array that preserves pulse shape discrimination capability, which will be summarized

    Feature integration in natural language concepts

    Get PDF
    Two experiments measured the joint influence of three key sets of semantic features on the frequency with which artifacts (Experiment 1) or plants and creatures (Experiment 2) were categorized in familiar categories. For artifacts, current function outweighed both originally intended function and current appearance. For biological kinds, appearance and behavior, an inner biological function, and appearance and behavior of offspring all had similarly strong effects on categorization. The data were analyzed to determine whether an independent cue model or an interactive model best accounted for how the effects of the three feature sets combined. Feature integration was found to be additive for artifacts but interactive for biological kinds. In keeping with this, membership in contrasting artifact categories tended to be superadditive, indicating overlapping categories, whereas for biological kinds, it was subadditive, indicating conceptual gaps between categories. It is argued that the results underline a key domain difference between artifact and biological concepts
    • …
    corecore