559 research outputs found

    The Functional Significance of Black-Pigmented Leaves: Photosynthesis, Photoprotection and Productivity in Ophiopogon planiscapus ‘Nigrescens’

    Get PDF
    Black pigmented leaves are common among horticultural cultivars, yet are extremely rare across natural plant populations. We hypothesised that black pigmentation would disadvantage a plant by reducing photosynthesis and therefore shoot productivity, but that this trait might also confer protective benefits by shielding chloroplasts against photo-oxidative stress. CO2 assimilation, chlorophyll a fluorescence, shoot biomass, and pigment concentrations were compared for near isogenic green- and black-leafed Ophiopogon planiscapus ‘Nigrescens’. The black leaves had lower maximum CO2 assimilation rates, higher light saturation points and higher quantum efficiencies of photosystem II (PSII) than green leaves. Under saturating light, PSII photochemistry was inactivated less and recovered more completely in the black leaves. In full sunlight, green plants branched more abundantly and accumulated shoot biomass quicker than the black plants; in the shade, productivities of the two morphs were comparable. The data indicate a light-screening, photoprotective role of foliar anthocyanins. However, limitations to photosynthetic carbon assimilation are relatively small, insufficient to explain the natural scarcity of black-leafed plants

    Optimal quantization for the pricing of swing options

    Get PDF
    In this paper, we investigate a numerical algorithm for the pricing of swing options, relying on the so-called optimal quantization method. The numerical procedure is described in details and numerous simulations are provided to assert its efficiency. In particular, we carry out a comparison with the Longstaff-Schwartz algorithm.Comment: 27

    A core phyllosphere microbiome exists across distant populations of a tree species indigenous to New Zealand

    Get PDF
    The phyllosphere microbiome is increasingly recognised as an influential component of plant physiology, yet it remains unclear whether stable host-microbe associations generally exist in the phyllosphere. Leptospermum scoparium (mānuka) is a tea tree indigenous to New Zealand, and honey derived from mānuka is widely known to possess unique antimicrobial properties. However, the host physiological traits associated with these antimicrobial properties vary widely, and the specific cause of such variation has eluded scientists despite decades of research. Notably, the mānuka phyllosphere microbiome remains uncharacterised, and its potential role in mediating host physiology has not been considered. Working within the prevailing core microbiome conceptual framework, we hypothesise that the phyllosphere microbiome of mānuka exhibits specific host association patterns congruent with those of a microbial community under host selective pressure (null hypothesis: the mānuka phyllosphere microbiome is recruited stochastically from the surrounding environment). To examine our hypothesis, we characterised the phyllosphere and associated soil microbiomes of five distinct and geographically distant mānuka populations across the North Island of New Zealand. We identified a habitat-specific and relatively abundant core microbiome in the mānuka phyllosphere, which was persistent across all samples. In contrast, non-core phyllosphere microorganisms exhibited significant variation across individual host trees and populations that was strongly driven by environmental and spatial factors. Our results demonstrate the existence of a dominant and ubiquitous core microbiome in the phyllosphere of mānuka, supporting our hypothesis that phyllosphere microorganisms of mānuka exhibit specific host association and potentially mediate physiological traits of this nationally and culturally treasured indigenous plant. In addition, our results illustrate biogeographical patterns in mānuka phyllosphere microbiomes and offer insight into factors contributing to phyllosphere microbiome assembly

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Rapid Detection of Infestation of Apple Fruits by the Peach Fruit Moth, Carposina sasakii Matsumura, Larvae Using a 0.2-T Dedicated Magnetic Resonance Imaging Apparatus

    Get PDF
    Infestation of harvested apple fruits by the peach fruit moth (Carposina sasakii Matsumura) was studied using a dedicated magnetic resonance imaging (MRI) apparatus equipped with a 0.2-T permanent magnet. Infested holes on the three-dimensional (3-D) images tracked ecological movements of peach fruit moth larvae within the food fruits, and thus in their natural habitat. Sensitive short solenoid coil and surface coil detectors were devised to shorten measurement times. The short solenoid coil detected infestation holes at a rate of 6.4 s per image by the single-slice 2-D measurement. The multi-slice 2-D measurement provided six slice images of a fruit within 2 min taken by the two detectors. These results indicate that the 0.2-T MRI apparatus allows one to distinguish sound fruits from infested ones, and also as a means for plant protection and the preservation of natural ecological systems in foreign trade

    Application of the rainbow trout derived intestinal cell line (RTgutGC) for ecotoxicological studies: molecular and cellular responses following exposure to copper.

    Get PDF
    There is an acknowledged need for in vitro fish intestinal model to help understand dietary exposure to chemicals in the aquatic environment. The presence and use of such models is however largely restrictive due to technical difficulties in the culturing of enterocytes in general and the availability of appropriate established cell lines in particular. In this study, the rainbow trout (Oncorhynchus mykiss) intestinal derived cell line (RTgutGC) was used as a surrogate for the "gut sac" method. To facilitate comparison, RTgutGC cells were grown as monolayers (double-seeded) on permeable Transwell supports leading to a two-compartment intestinal model consisting of polarised epithelium. This two-compartment model divides the system into an upper apical (lumen) and a lower basolateral (portal blood) compartment. In our studies, these cells stained weakly for mucosubstances, expressed the tight junction protein ZO-1 in addition to E-cadherin and revealed the presence of polarised epithelium in addition to microvilli protrusions. The cells also revealed a comparable transepithelial electrical resistance (TEER) to the in vivo situation. Importantly, the cell line tolerated apical saline (1:1 ratio) thus mimicking the intact organ to allow assessment of uptake of compounds across the intestine. Following an exposure over 72 h, our study demonstrated that the RTgutGC cell line under sub-lethal concentrations of copper sulphate (Cu) and modified saline solutions demonstrated uptake of the metal with saturation levels comparable to short term ex situ gut sac preparations. Gene expression analysis revealed no significant influence of pH or time on mRNA expression levels of key stress related genes (i.e. CYP3A, GST, mtA, Pgp and SOD) in the Transwell model. However, significant positive correlations were found between all genes investigated suggesting a co-operative relationship amongst the genes studied. When the outlined characteristics of the cell line are combined with the division of compartments, the RTgutGC double seeded model represents a potential animal replacement model for ecotoxicological studies. Overall, this model could be used to study the effects and predict aquatic gastrointestinal permeability of metals and other environmentally relevant contaminants in a cost effective and high throughput manner

    Reproducibility of histopathological findings in experimental pathology of the mouse: a sorry tail

    Get PDF
    Reproducibility of in vivo\textit{in vivo} research using the mouse as a model organism depends on many factors, including experimental design, strain or stock, experimental protocols, and methods of data evaluation. Gross and histopathology are often the endpoints of such research and there is increasing concern about the accuracy and reproducibility of diagnoses in the literature. To reproduce histopathological results, the pathology protocol, including necropsy methods and slide preparation, should be followed by interpretation of the slides by a pathologist familiar with reading mouse slides and familiar with the consensus medical nomenclature used in mouse pathology. Likewise, it is important that pathologists are consulted as reviewers of manuscripts where histopathology is a key part of the investigation. The absence of pathology expertise in planning, executing and reviewing in vivo\textit{in vivo} research using mice leads to questionable pathology-based findings and conclusions from studies, even in high-impact journals. We discuss the various aspects of this problem, give some examples from the literature and suggest solutions.This work was supported in part by US National Institutes of Health grants R01 AR049288, CA089713 and R21 AR063781 (to J.P.S.) and by The Warden and Fellows of Robinson College, Cambridge (to P.N.S.)
    • 

    corecore