5 research outputs found

    A balanced view of scale in spatial statistical analysis

    Get PDF
    Concepts of spatial scale, such as extent, grain, resolution, range, footprint, support and cartographic ratio are not interchangeable. Because of the potential confusion among the definitions of these terms, we suggest that authors avoid the term "scale" and instead refer to specific concepts. In particular, we are careful to discriminate between observation scales, scales of ecological phenomena and scales used in spatial statistical analysis. When scales of observation or analysis change, that is, when the unit size, shape, spacing or extent are altered, statistical results are expected to change. The kinds of results that may change include estimates of the population mean and variance, the strength and character of spatial autocorrelation and spatial anisotropy, patch and gap sizes and multivariate relationships, The First three of these results (precision of the mean, variance and spatial autocorrelation) can sometimes be estimated using geostatistical support-effect models. We present four case studies of organism abundance and cover illustrating some of these changes and how conclusions about ecological phenomena (process and structure) may be affected. We identify the influence of observational scale on statistical results as a subset of what geographers call the Modifiable Area Unit Problem (MAUP). The way to avoid the MAUP is by careful construction of sampling design and analysis. We recommend a set of considerations for sampling design to allow useful tests for specific scales of a phenomenon under study. We further recommend that ecological studies completely report all components of observation and analysis scales to increase the possibility of cross-study comparisons

    Illustrations and guidelines for selecting statistical methods for quantifying spatial pattern in ecological data

    Get PDF
    This paper aims to provide guidance to ecologists with limited experience in spatial analysis to help in their choice of techniques, It uses examples to compare methods of spatial analysis for ecological field data. A taxonomy of different data types is presented, including point- and area-referenced data, with and without attributes. Spatially and non-spatially explicit data are distinguished. The effects of sampling and other transformations that convert one data type to another are discussed; the possible loss of spatial information is considered. Techniques for analyzing spatial pattern, developed in plant ecology, animal ecology, landscape ecology, geostatistics and applied statistics are reviewed briefly and their overlap in methodology and philosophy noted. The techniques are categorized according to their output and the inferences that may be drawn from them, in a discursive style without formulae. Methods are compared for four case studies with field data covering a range of types. These are: 1) percentage cover of three shrubs along a line transect 2) locations and volume of a desert plant in a I ha area: 3) a remotely-sensed spectral index and elevation from 10(5) km(2) of a mountainous region; and 4) land cover from three rangeland types within 800 km2 of a coastal region. Initial approaches utilize mapping, frequency distributions and variance-mean indices. Analysis techniques we compare include: local quadrat variance, block, quadrat variance, correlograms, variograms, angular correlation, directional variograms, wavelets, SADIE, nearest neighbour methods, Ripley's L(t), and various landscape ecology metrics. Our advice to ecologists is to use simple visualization techniques for initial analysis, and subsequently to select methods that are appropriate for the data type and that answer their specific questions of interest, It is usually prudent to employ several different techniques

    Ecography 25: 626 -- 640, 2002

    No full text
    this paper is to present a balanced view of scale terms by considering their specific meanings and their relationships to one another. We identify some of the most prevalent scale terms in ecology and propose that their definitions can be best understood within three categories or dimensions. We then review how changing scales within two of these categories (sampling and analysis) can make a substantial difference to the inferences about the third category (phenomena) . The relevance of changing scales is further discussed using four case studies. Finally, we recommend sampling design considerations that are specific to these dimensions of scal
    corecore