123 research outputs found

    Employing surfactant-assisted hydrothermal synthesis to control CuGaO2 nanoparticle formation and improved carrier selectivity of perovskite solar cells

    Full text link
    Delafossites like CuGaO2 have appeared as promising p-type semiconductor materials for opto-electronic applications mainly due to their high optical transparency and electrical conductivity. However, existing synthetic efforts usually result in particles with large diameter limiting their performance relevant to functional electronic applications. In this article, we report a novel surfactant-assisted hydrothermal synthesis method, which allows the development of ultrafine (~5 nm) monodispersed p-type CuGaO2 nanoparticles (NPs). We show that DMSO can be used as a ligand and dispersing solvent for stabilizing the CuGaO2 NPs. The resulting dispersion is used for the fabrication of dense, compact functional CuGaO2 electronic layer with properties relevant to advanced optoelectronic applications. As a proof of concept, the surfactant-assisted hydrothermal synthesized CuGaO2 is incorporated as a hole transporting layer (HTL) in the inverted p-i-n perovskite solar cell device architecture providing improved hole carrier selectivity and power conversion efficiency compared to conventional PEDOT:PSS HTL based perovskite solar cells

    Room Temperature Nanoparticulate Interfacial Layers for Perovskite Solar Cells via solvothermal synthesis

    Full text link
    We present a solvothermal synthetic route to produce monodispersed CuO nanoparticles (NPs) in the range of 5-10 nm that can be used as hole selective interfacial layer between indium tin oxide (ITO) and perovskite active layer for p-i-n perovskite solar cells by a spin casting the dispersions at room temperature. The bottom electrode interface modification provided by spherical CuO-NPs at room temperature promotes the formation of high quality perovskite photoactive layers with large crystal size and strong optical absorption. Furthermore, it is shown that the nanoparticulate nature of the CuO hole transporting interfacial layer can be used to improve light manipulation within perovskite solar cell device structure. The corresponding p-i-n CH3NH3PbI3-based solar cells show high Voc values of 1.09 V, which is significantly higher compared to the Voc values obtained with conventional PEDOT:PSS hole selective contact based perovskite solar cells

    Long Thermal Stability of Inverted Perovskite Photovoltaics Incorporating Fullerene-based Diffusion Blocking Layer

    Full text link
    In this article, the stability of p-i-n perovskite solar cells is studied under accelerated heat lifetime conditions (60 oC ,85oC and N2 atmosphere). By using a combination of buffer layer engineering, impedance spectroscopy and other characterization techniques, we propose the interaction of the perovskite active layer with the top Al metal electrode through diffusion mechanisms as the major thermal degradation pathway for planar inverted perovskite photovoltaics (PVs) under 85oC heat conditions. We show that by using thick solution processed fullerene buffer layer the perovskite active layer can be isolated from the top metal electrode and improve the lifetime performance of the inverted perovskite photovoltaics at 85 oC. Finally, we present an optimized solution processed inverted perovskite PV device using thick fullerene-based diffusion blocking layer with over 1000 hours accelerated heat lifetime performance at 60oC

    Nanoparticulate Metal Oxide Top Electrode Interface Modification Improves the Thermal Stability of Inverted Perovskite Photovoltaics

    Full text link
    Solution processed {\gamma}-Fe2O3 nanoparticles via the solvothermal colloidal synthesis in conjunction with ligand-exchange method are used for interface modification of the top electrode in inverted perovskite solar cells. In comparison to more conventional top electrodes such as PC(70)BM/Al and PC(70)BM/AZO/Al, we show that incorporation of a {\gamma}-Fe2O3 provides an alternative solution processed top electrode (PC(70)BM/{\gamma}-Fe2O3/Al) that not only results in comparable power conversion efficiencies but also improved thermal stability of inverted perovskite photovoltaics. The origin of improved stability of inverted perovskite solar cells incorporating PC(70)BM/ {\gamma}-Fe2O3/Al under accelerated heat lifetime conditions is attributed to the acidic surface nature of {\gamma}-Fe2O3 and reduced charge trapped density within PC(70)BM/ {\gamma}-Fe2O3/Al top electrode interfaces.Comment: 24 pages, 11 figure

    Near-field interactions between metal nanoparticle surface plasmons and molecular excitons in thin-films: part I: absorption

    Get PDF
    In this and the following paper (parts I and II, respectively), we systematically study the interactions between surface plasmons of metal nanoparticles (NPs) with excitons in thin-films of organic media. In an effort to exclusively probe near-field interactions, we utilize spherical Ag NPs in a size-regime where far-field light scattering is negligibly small compared to absorption. In part I, we discuss the effect of the presence of these Ag NPs on the absorption of the embedding medium by means of experiment, numerical simulations, and analytical calculations, all shown to be in good agreement. We observe absorption enhancement in the embedding medium due to the Ag NPs with a strong dependence on the medium permittivity, the spectral position relative to the surface plasmon resonance frequency, and the thickness of the organic layer. By introducing a low index spacer layer between the NPs and the organic medium, this absorption enhancement is experimentally confirmed to be a near field effect In part II, we probe the impact of the Ag NPs on the emission of organic molecules by time-resolved and steady-state photoluminescence measurements

    Electronic structure of poly-3-hexylthiophene (P3HT) thin film

    Full text link
    This work is supported by Russian Foundation for Basic Research (Project 14-08-31088) and Ural Federal University in framework of financial support for young scientists

    Up scalable ITO free organic light emitting diodes based on embedded inkjet printed copper grids

    Get PDF
    We report on ITO-free OLEDS with a transparent hybrid Cu nanoparticle grid/PEDOT:PSS electrode processed in ambient conditions. An experimentally based methodology was implemented, where studies on alternative PEDOT:PSS derivatives and Cu grid design were performed, to gradually increase the efficiency of lab scale ITO-free OLEDs. To further increase electrode performance, inkjet-printed (IJP) Cu-grids are embedded to flatten the electrode, reduce leakage current and enhance homogeneity and efficiency. Finally, embedded Cu based ITO-free OLEDs showed current and power efficiencies comparable to reference ITO-based OLEDs. Methods to manufacture large area flat embedded IJP Cu-electrodes on glass and flexible substrates are presented and upscaling prospects of the proposed ITO-free electrode are discussed
    corecore