5,818 research outputs found

    Noise reduction in muon tomography for detecting high density objects

    Get PDF
    The muon tomography technique, based on multiple Coulomb scattering of cosmic ray muons, has been proposed as a tool to detect the presence of high density objects inside closed volumes. In this paper a new and innovative method is presented to handle the density fluctuations (noise) of reconstructed images, a well known problem of this technique. The effectiveness of our method is evaluated using experimental data obtained with a muon tomography prototype located at the Legnaro National Laboratories (LNL) of the Istituto Nazionale di Fisica Nucleare (INFN). The results reported in this paper, obtained with real cosmic ray data, show that with appropriate image filtering and muon momentum classification, the muon tomography technique can detect high density materials, such as lead, albeit surrounded by light or medium density material, in short times. A comparison with algorithms published in literature is also presented

    Tailoring the structure and thermoelectric properties of BaTiO3via Eu2+ substitution

    Get PDF
    A series of Ba1_xEuxTiO3_d (0.1 < x < 0.9) phases with B40 nm particle size were synthesized via a Pechini method followed by annealing and sintering under a reducing atmosphere. The effects of Eu2+ substitution on the BaTiO3 crystal structure and the thermoelectric transport properties were systematically investigated. According to synchrotron X-ray diffraction data only cubic perovskite structures were observed. On the local scale below about 20 \uc5 (equal to B5 unit cells) deviations from the cubic structure model (Pm%3m) were detected by evaluation of the pair distribution function (PDF). These deviations cannot be explained by a simple symmetry breaking model like in EuTiO3_d. The best fit was achieved in the space group Amm2 allowing for a movement of Ti and Ba/Eu along h110i of the parent unit cell as observed for BaTiO3. Density functional calculations delivered an insight into the electronic structure of Ba1_xEuxTiO3_d. From the obtained density of states a significant reduction of the band gap by the presence of filled Eu2+ 4f states at the top of the valence band was observed. The physical property measurements revealed that barium\u2013europium titanates exhibit n-type semiconducting behavior and at high temperature the electrical conductivity strongly depended on the Eu2+ content. Activation energies calculated from the electrical conductivity and Seebeck coefficient data indicate that at high temperatures (800 K o T o 1123 K) the conduction mechanism of Ba1_xEuxTiO3_d (0.1 r x r 0.9) is a polaron hopping when 0 o x r 0.6 and is a thermally activated process when 0.6 o x o 1. Besides, the thermal conduc tivity increases with increasing Eu2+ concentration. Due to a remarkable improvement of the power factor, Ba0.1Eu0.9TiO3_d showed a ZT value of 0.24 at 1123 K

    Rare earth doped ceria: The complex connection between structure and properties

    Get PDF
    The need for high efficiency energy production, conversion, storage and transport is serving as a robust guide for the development of new materials. Materials with physical-chemical properties matching specific functions in devices are produced by suitably tuning the crystallographic- defect- and micro-structure of the involved phases. In this review, we discuss the case of Rare Earth doped Ceria. Due to their high oxygen diffusion coefficient at temperatures higher than ~500\ub0C, they are very promising materials for several applications such as electrolytes for Solid Oxide Fuel and Electrolytic Cells (SOFC and SOEC, respectively). Defects are integral part of the conduction process, hence of the final application. As the fluorite structure of ceria is capable of accommodating a high concentration of lattice defects, the characterization and comprehension of such complex and highly defective materials involve expertise spanning from computational chemistry, physical chemistry, catalysis, electrochemistry, microscopy, spectroscopy, and crystallography. Results coming from different experimental and computational techniques will be reviewed, showing that structure determination (at different scale length) plays a pivotal role bridging theoretical calculation and physical properties of these complex materials

    Relaxor ferroeletric behavior inSr1&#8722;xPrxTiO3 : Cooperation between polar and antiferrodistortive instabilities

    Get PDF
    Chemical doping at the Sr and Ti sites is a feasible way to alter the quantum paraelectric state of SrTiO3 perovskite. Doping with Pr is known to induce relaxor ferroelectricity at room temperature in the Sr1 12xPrxTiO3 solid solution. The relationship between its dielectric properties and structural phase transition has been debated, but no definitive structural argument has been proposed. Here we present a systematic structural study of Sr1 12xPrxTiO3 (0.020 _ x _ 0.150).We establish the structural phase diagram using high-resolution x-ray powder diffraction by finding the antiferrodistortive structural phase transitions for all the compositions studied. By using pair distribution function analysis, we show the mismatch between local and long-range structures in terms of increased local order parameters. Finally, we propose a correlation between the local structural order parameters and the emergence of hard polar modes as found by Raman spectroscopy. Our results are quantitatively consistent with recent theoretical calculations showing that the increase of local tetragonality and local octahedral tilting above a critical value in fact underlie the polar instability. This confirms that structural orders involving both polar and antiferrodistortive characters compete and cooperate at different levels, promoting ferroelectricity in Sr1 12xPrxTiO3

    On-orbit Operations and Offline Data Processing of CALET onboard the ISS

    Get PDF
    The CALorimetric Electron Telescope (CALET), launched for installation on the International Space Station (ISS) in August, 2015, has been accumulating scientific data since October, 2015. CALET is intended to perform long-duration observations of high-energy cosmic rays onboard the ISS. CALET directly measures the cosmic-ray electron spectrum in the energy range of 1 GeV to 20 TeV with a 2% energy resolution above 30 GeV. In addition, the instrument can measure the spectrum of gamma rays well into the TeV range, and the spectra of protons and nuclei up to a PeV. In order to operate the CALET onboard ISS, JAXA Ground Support Equipment (JAXA-GSE) and the Waseda CALET Operations Center (WCOC) have been established. Scientific operations using CALET are planned at WCOC, taking into account orbital variations of geomagnetic rigidity cutoff. Scheduled command sequences are used to control the CALET observation modes on orbit. Calibration data acquisition by, for example, recording pedestal and penetrating particle events, a low-energy electron trigger mode operating at high geomagnetic latitude, a low-energy gamma-ray trigger mode operating at low geomagnetic latitude, and an ultra heavy trigger mode, are scheduled around the ISS orbit while maintaining maximum exposure to high-energy electrons and other high-energy shower events by always having the high-energy trigger mode active. The WCOC also prepares and distributes CALET flight data to collaborators in Italy and the United States. As of August 31, 2017, the total observation time is 689 days with a live time fraction of the total time of approximately 84%. Nearly 450 million events are collected with a high-energy (E>10 GeV) trigger. By combining all operation modes with the excellent-quality on-orbit data collected thus far, it is expected that a five-year observation period will provide a wealth of new and interesting results.Comment: 11 pages, 7 figures, published online 27 February 201

    Search for GeV Gamma-ray Counterparts of Gravitational Wave Events by CALET

    Get PDF
    We present results on searches for gamma-ray counterparts of the LIGO/Virgo gravitational-wave events using CALorimetric Electron Telescope ({\sl CALET}) observations. The main instrument of {\sl CALET}, CALorimeter (CAL), observes gamma-rays from 1\sim1 GeV up to 10 TeV with a field of view of nearly 2 sr. In addition, the {\sl CALET} gamma-ray burst monitor (CGBM) views \sim3 sr and 2π\sim2\pi sr of the sky in the 7 keV -- 1 MeV and the 40 keV -- 20 MeV bands, respectively, by using two different crystal scintillators. The {\sl CALET} observations on the International Space Station started in October 2015, and here we report analyses of events associated with the following gravitational wave events: GW151226, GW170104, GW170608, GW170814 and GW170817. Although only upper limits on gamma-ray emission are obtained, they correspond to a luminosity of 1049105310^{49}\sim10^{53} erg s1^{-1} in the GeV energy band depending on the distance and the assumed time duration of each event, which is approximately the order of luminosity of typical short gamma-ray bursts. This implies there will be a favorable opportunity to detect high-energy gamma-ray emission in further observations if additional gravitational wave events with favorable geometry will occur within our field-of-view. We also show the sensitivity of {\sl CALET} for gamma-ray transient events which is the order of 10710^{-7}~erg\,cm2^{-2}\,s1^{-1} for an observation of 100~s duration.Comment: 12 pages, 8 figures, 1 table. Accepted for publication in Astrophysical Journa

    Electrodes Modified with Poly(3,4-Ethylenedioxythiophene) Doped with Sulfonated Polyarylethersulfones: Towards New Conducting Polymers

    Get PDF
    To overcome the well-known technical problems of Poly(3,4-Ethylenedioxythiophene) (PEDOT), i.e. difficult processability and patterning, due to its poor solubility in common organic and inorganic solvents, PEDOTs characterized by a full miscibility in the reaction solvents used, were successfully synthesized by a direct oxidative polycondensation reaction between Ethylenedioxythiophene (EDOT) and an oxidant species, i.e. ferric sulfate, in four organic reaction solvents: N, N-dimethylformamide (DMF), dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO) and N-methyl-2-pyrrolidone (NMP). The oxidative polycondensation of EDOT in the presence of Sulfonated Polyarylethersulfone (SPAES) as doping agent characterized by three increasing degree of sulfonation (DS), i.e. 0.5, 0.75 and 1.0 (meq SO3-\ub7g-1 of polymer), was performed for the first time, leading to a new conducting material: PEDOT_SPAES. PEDOT_SPAES can be easily processed and casted onto the surface of glassy carbon electrodes, reaching better electrochemical performances with respect to the precursors. PEDOT_SPAES chemical structure was investigated via wide-angle scattering (WAXS): comparing WAXS spectra of unmodified PEDOT and commercial PEDOT doped with 2-Naphthalenesulfonic acid, having crystalline structures, with the spectra of PEDOT_SPAESs, that are characterized by amorphous structures, it is possible to assess that for the first time PEDOT-based materials doped with SPAES were synthesized
    corecore