2,531 research outputs found

    Reduced Joule heating in nanowires

    Full text link
    The temperature distribution in nanowires due to Joule heating is studied analytically using a continuum model and a Green's function approach. We show that the temperatures reached in nanowires can be much lower than that predicted by bulk models of Joule heating, due to heat loss at the nanowire surface that is important at nanoscopic dimensions, even when the thermal conductivity of the environment is relatively low. In addition, we find that the maximum temperature in the nanowire scales weakly with length, in contrast to the bulk system. A simple criterion is presented to assess the importance of these effects. The results have implications for the experimental measurements of nanowire thermal properties, for thermoelectric applications, and for controlling thermal effects in nanowire electronic devices.Comment: 4 pages, 3 figures. To appear in Applied Physics Letter

    A kinetic Ising model study of dynamical correlations in confined fluids: Emergence of both fast and slow time scales

    Full text link
    Experiments and computer simulation studies have revealed existence of rich dynamics in the orientational relaxation of molecules in confined systems such as water in reverse micelles, cyclodextrin cavities and nano-tubes. Here we introduce a novel finite length one dimensional Ising model to investigate the propagation and the annihilation of dynamical correlations in finite systems and to understand the intriguing shortening of the orientational relaxation time that has been reported for small sized reverse micelles. In our finite sized model, the two spins at the two end cells are oriented in the opposite directions, to mimic the effects of surface that in real system fixes water orientation in the opposite directions. This produces opposite polarizations to propagate inside from the surface and to produce bulk-like condition at the centre. This model can be solved analytically for short chains. For long chains we solve the model numerically with Glauber spin flip dynamics (and also with Metropolis single-spin flip Monte Carlo algorithm). We show that model nicely reproduces many of the features observed in experiments. Due to the destructive interference among correlations that propagate from the surface to the core, one of the rotational relaxation time components decays faster than the bulk. In general, the relaxation of spins is non-exponential due to the interplay between various interactions. In the limit of strong coupling between the spins or in the limit of low temperature, the nature of relaxation of the spins undergoes a qualitative change with the emergence of a homogeneous dynamics where decay is predominantly exponential, again in agreement with experiments.Comment: 27 pages, 8 figure

    Narrow-escape times for diffusion in microdomains with a particle-surface affinity: Mean-field results

    Full text link
    We analyze the mean time t_{app} that a randomly moving particle spends in a bounded domain (sphere) before it escapes through a small window in the domain's boundary. A particle is assumed to diffuse freely in the bulk until it approaches the surface of the domain where it becomes weakly adsorbed, and then wanders diffusively along the boundary for a random time until it desorbs back to the bulk, and etc. Using a mean-field approximation, we define t_{app} analytically as a function of the bulk and surface diffusion coefficients, the mean time it spends in the bulk between two consecutive arrivals to the surface and the mean time it wanders on the surface within a single round of the surface diffusion.Comment: 8 pages, 1 figure, submitted to JC

    Cylindrical-wave diffraction by a rational wedge

    Get PDF
    In this paper, new expressions for the field produced by the diffraction of a cylindrical wave by a wedge, whose angle can be expressed as a rational multiple of π are given. The solutions are expressed in terms of source terms and real integrals that represent the diffracted field. The general result obtained includes as special cases, Macdonald's solution for diffraction by a half plane, a solution for Carslaw's problem of diffraction by a wedge of open angle 2π\3, and a new representation for the solution of the problem of diffraction by a mixed soft-hard half plane

    Modelling trends in OH radical concentrations using generalized additive models

    Get PDF
    During the TORCH campaign a zero dimensional box model based on the Master Chemical Mechanism was used to model concentrations of OH radicals. The model provided a close overall fit to measured concentrations but with some significant deviations. In this research, an approach was established for applying Generalized Additive Models (GAM) to atmospheric concentration data. Two GAM models were fitted to OH radical concentrations using TORCH data, the first using measured OH data and the second using MCM model results. GAM models with five smooth functions provided a close fit to the data with 78% of the deviance explained for measured OH and 83% for modelled OH. The GAM model for measured OH produced substantially better predictions of OH concentrations than the original MCM model results. The diurnal profile of OH concentration was reproduced and the predicted mean diurnal OH concentration was only 0.2% less than the measured concentration compared to 16.3% over-estimation by the MCM model. Photolysis reactions were identified as most important in explaining concentrations of OH. The GAM models combined both primary and secondary pollutants and also anthropogenic and biogenic species to explain changes in OH concentrations. Differences identified in the dependencies of modelled and measured OH concentrations, particularly for aromatic and biogenic species, may help to understand why the MCM model predictions sometimes disagree with measurements of atmospheric species

    Single-Species Three-Particle Reactions in One Dimension

    Full text link
    Renormalization group calculations for fluctuation-dominated reaction-diffusion systems are generally in agreement with simulations and exact solutions. However, simulations of the single-species reactions 3A->(0,A,2A) at their upper critical dimension d_c=1 have found asymptotic densities argued to be inconsistent with renormalization group predictions. We show that this discrepancy is resolved by inclusion of the leading corrections to scaling, which we derive explicitly and show to be universal, a property not shared by the A+A->(0,A) reactions. Finally, we demonstrate that two previous Smoluchowski approaches to this problem reduce, with various corrections, to a single theory which yields, surprisingly, the same asymptotic density as the renormalization group.Comment: 8 pages, 5 figs, minor correction

    Fourier mode dynamics for the nonlinear Schroedinger equation in one-dimensional bounded domains

    Full text link
    We analyze the 1D focusing nonlinear Schr\"{o}dinger equation in a finite interval with homogeneous Dirichlet or Neumann boundary conditions. There are two main dynamics, the collapse which is very fast and a slow cascade of Fourier modes. For the cubic nonlinearity the calculations show no long term energy exchange between Fourier modes as opposed to higher nonlinearities. This slow dynamics is explained by fairly simple amplitude equations for the resonant Fourier modes. Their solutions are well behaved so filtering high frequencies prevents collapse. Finally these equations elucidate the unique role of the zero mode for the Neumann boundary conditions

    Enhancement of marine cloud albedo via controlled sea spray injections: a global model study of the influence of emission rates, microphysics and transport

    Get PDF
    Modification of cloud albedo by controlled emission of sea spray particles into the atmosphere has been suggested as a possible geoengineering option to slow global warming. Previous global studies have imposed changes in cloud drop concentration in low level clouds to explore the radiative and climatic effects. Here, we use a global aerosol transport model to quantify how an imposed flux of sea spray particles affects the natural aerosol processes, the particle size distribution, and concentrations of cloud drops. We assume that the proposed fleet of vessels emits sea spray particles with a wind speed-dependent flux into four regions of persistent stratocumulus cloud off the western coasts of continents. The model results show that fractional changes in cloud drop number concentration (CDNC) vary substantially between the four regions because of differences in wind speed (which affects the spray efficiency of the vessels), transport and particle deposition rates, and because of variations in aerosols from natural and anthropogenic sources. Using spray emission rates comparable to those implied by previous studies we find that the predicted CDNC changes are very small (maximum 20%) and in one of the four regions even negative. The weak or negative effect is because the added particles suppress the in-cloud supersaturation and prevent existing aerosol particles from forming cloud drops. A scenario with five times higher emissions (considerably higher than previously assumed) increases CDNC on average by 45–163%, but median concentrations are still below the 375 cm<sup>−3</sup> assumed in previous studies. An inadvertent effect of the spray emissions is that sulphur dioxide concentrations are suppressed by 1–2% in the seeded regions and sulphuric acid vapour by 64–68% due to chemical reactions on the additional salt particles. The impact of this suppression on existing aerosol is negligible in the model, but should be investigated further in the real environment so that inadvertent impacts can be excluded

    The impact of the 1783-1784 AD Laki eruption on global aerosol formation processes and cloud condensation nuclei

    Get PDF
    The 1783–1784 AD Laki flood lava eruption commenced on 8 June 1783 and released 122 Tg of sulphur dioxide gas over the course of 8 months into the upper troposphere and lower stratosphere above Iceland. Previous studies have examined the impact of the Laki eruption on sulphate aerosol and climate using general circulation models. Here, we study the impact on aerosol microphysical processes, including the nucleation of new particles and their growth to cloud condensation nuclei (CCN) using a comprehensive Global Model of Aerosol Processes (GLOMAP). Total particle concentrations in the free troposphere increase by a factor ~16 over large parts of the Northern Hemisphere in the 3 months following the onset of the eruption. Particle concentrations in the boundary layer increase by a factor 2 to 5 in regions as far away as North America, the Middle East and Asia due to long-range transport of nucleated particles. CCN concentrations (at 0.22% supersaturation) increase by a factor 65 in the upper troposphere with maximum changes in 3-month zonal mean concentrations of ~1400 cm<sup>−3</sup> at high northern latitudes. 3-month zonal mean CCN concentrations in the boundary layer at the latitude of the eruption increase by up to a factor 26, and averaged over the Northern Hemisphere, the eruption caused a factor 4 increase in CCN concentrations at low-level cloud altitude. The simulations show that the Laki eruption would have completely dominated as a source of CCN in the pre-industrial atmosphere. The model also suggests an impact of the eruption in the Southern Hemisphere, where CCN concentrations are increased by up to a factor 1.4 at 20° S. Our model simulations suggest that the impact of an equivalent wintertime eruption on upper tropospheric CCN concentrations is only about one-third of that of a summertime eruption. The simulations show that the microphysical processes leading to the growth of particles to CCN sizes are fundamentally different after an eruption when compared to the unperturbed atmosphere, underlining the importance of using a fully coupled microphysics model when studying long-lasting, high-latitude eruptions

    Comment on Photothermal radiometry parametric identifiability theory for reliable and unique nondestructive coating thickness and thermophysical measurements, J. Appl. Phys. 121(9), 095101 (2017)

    Full text link
    A recent paper [X. Guo, A. Mandelis, J. Tolev and K. Tang, J. Appl. Phys., 121, 095101 (2017)] intends to demonstrate that from the photothermal radiometry signal obtained on a coated opaque sample in 1D transfer, one should be able to identify separately the following three parameters of the coating: thermal diffusivity, thermal conductivity and thickness. In this comment, it is shown that the three parameters are correlated in the considered experimental arrangement, the identifiability criterion is in error and the thickness inferred therefrom is not trustable.Comment: 3 page
    corecore