6,993 research outputs found

    Modeling the physical properties in the ISM of the low-metallicity galaxy NGC4214

    Full text link
    We present a model for the interstellar medium of NGC4214 with the objective to probe the physical conditions in the two main star-forming regions and their connection with the star formation activity of the galaxy. We used the spectral synthesis code Cloudy to model an HII region and the associated photodissociation region (PDR) to reproduce the emission of mid- and far-infrared fine-structure cooling lines from the Spitzer and Herschel space telescopes for these two regions. Input parameters of the model, such as elemental abundances and star formation history, are guided by earlier studies of the galaxy, and we investigated the effect of the mode in which star formation takes place (bursty or continuous) on the line emission. Furthermore, we tested the effect of adding pressure support with magnetic fields and turbulence on the line predictions. We find that this model can satisfactorily predict (within a factor of ~2) all observed lines that originate from the ionized medium ([SIV] 10.5um, [NeIII] 15.6um, [SIII] 18.7um, [SIII] 33.5um, and [OIII] 88um), with the exception of [NeII] 12.8um and [NII] 122um, which may arise from a lower ionization medium. In the PDR, the [OI] 63um, [OI] 145um, and [CII] 157um lines are matched within a factor of ~5 and work better when weak pressure support is added to the thermal pressure or when the PDR clouds are placed farther away from the HII regions and have covering factors lower than unity. Our models of the HII region agree with different evolutionary stages found in previous studies, with a more evolved, diffuse central region, and a younger, more compact southern region. However, the local PDR conditions are averaged out on the 175 pc scales that we probe and do not reflect differences observed in the star formation properties of the two regions.Comment: accepted for publication in A&

    Object Matching in Distributed Video Surveillance Systems by LDA-Based Appearance Descriptors

    Full text link
    Establishing correspondences among object instances is still challenging in multi-camera surveillance systems, especially when the cameras’ fields of view are non-overlapping. Spatiotemporal constraints can help in solving the correspondence problem but still leave a wide margin of uncertainty. One way to reduce this uncertainty is to use appearance information about the moving objects in the site. In this paper we present the preliminary results of a new method that can capture salient appearance characteristics at each camera node in the network. A Latent Dirichlet Allocation (LDA) model is created and maintained at each node in the camera network. Each object is encoded in terms of the LDA bag-of-words model for appearance. The encoded appearance is then used to establish probable matching across cameras. Preliminary experiments are conducted on a dataset of 20 individuals and comparison against Madden’s I-MCHR is reported

    The Nature of the Low-Metallicity ISM in the Dwarf Galaxy NGC 1569

    Get PDF
    We are modeling the spectra of dwarf galaxies from infrared to submillimeter wavelengths to understand the nature of the various dust components in low-metallicity environments, which may be comparable to the ISM of galaxies in their early evolutionary state. The overall nature of the dust in these environments appears to differ from those of higher metallicity starbursting systems. Here, we present a study of one of our sample of dwarf galaxies, NGC 1569, which is a nearby, well-studied starbursting dwarf. Using ISOCAM, IRAS, ISOPHOT and SCUBA data with the Desert et al. (1990) model, we find consistency with little contribution from PAHs and Very Small Grains and a relative abundance of bigger colder grains, which dominate the FIR and submillimeter wavelengths. We are compelled to use 4 dust components, adding a very cold dust component, to reproduce the submillimetre excess of our observations.Comment: 4 pages, 4 postscript figures. Proceedings of "Infrared and Submillimeter Astronomy. An International Colloquium to Honor the Memory of Guy Serra" (2002

    Multi-level study of C3H2: The first interstellar hydrocarbon ring

    Get PDF
    Cyclic species in the interstellar medium have been searched for almost since the first detection of interstellar polyatomic molecules. Eleven different C3H2 rotational transitions were detected; 9 of which were studied in TMC-1, a nearby dark dust cloud, are shown. The 1 sub 10 yields 1 sub 01 and 2 sub 20 yields 2 sub 11 transitions were observed with the 43 m NRAO telescope, while the remaining transitions were detected with the 14 m antenna of the Five College Radio Observatory (FCRAO). The lines detected in TMC-1 have energies above the ground state ranging from 0.9 to 17.1 K and consist of both ortho and para species. Limited maps were made along the ridge for several of the transitions. The HC3N J = 2 yields 1 transition were mapped simultaneously with the C3H2 1 sub 10 yields 1 sub 01 line and therefore can compare the distribution of this ring with a carbon chain in TMC-1. C3H2 is distributed along a narrow ridge with a SE - NW extension which is slightly more extended than the HC2N J = 2 yields 1. Gaussian fits gives a FWHP extension of 8'5 for C3H2 while HC3N has a FWHP of 7'. The data show variations of the two velocity components along the ridge as a function of transition. Most of the transitions show a peak at the position of strongest HC3N emission while the 2 sub 21 yields 2 sub 10 transition shows a peak at the NH3 position

    Variations of the Mid-IR Aromatic Features Inside and Among Galaxies

    Get PDF
    We present the results of a systematic study of mid-IR spectra of Galactic regions, Magellanic HII regions, and galaxies of various types (dwarf, spiral, starburst), observed by the satellites ISO and Spitzer. We study the relative variations of the 6.2, 7.7, 8.6 and 11.3 micron features inside spatially resolved objects (such as M82, M51, 30 Doradus, M17 and the Orion Bar), as well as among 90 integrated spectra of 50 objects. Our main results are that the 6.2, 7.7 and 8.6 micron bands are essentially tied together, while the ratios between these bands and the 11.3 micron band varies by one order of magnitude. This implies that the properties of the PAHs are remarkably universal throughout our sample, and that the relative variations of the band ratios are mainly controled by the fraction of ionized PAHs. In particular, we show that we can rule out both the modification of the PAH size distribution, and the mid-infrared extinction, as an explanation of these variations. Using a few well-studied Galactic regions (including the spectral image of the Orion Bar), we give an empirical relation between the I(6.2)/I(11.3) ratio and the ionization/recombination ratio G0/ne.Tgas^0.5, therefore providing a useful quantitative diagnostic tool of the physical conditions in the regions where the PAH emission originates. Finally, we discuss the physical interpretation of the I(6.2)/I(11.3) ratio, on galactic size scales.Comment: Accepted by the ApJ, 67 pages, 70 figure

    Dissecting the spiral galaxy M83: mid-infrared emission and comparison with other tracers of star formation

    Full text link
    We present a detailed mid-infrared study of the nearby, face-on spiral galaxy M83 based on ISOCAM data. M83 is a unique case study, since a wide variety of MIR broad-band filters as well as spectra, covering the wavelength range of 4 to 18\mu m, were observed and are presented here. Emission maxima trace the nuclear and bulge area, star-formation regions at the end of the bar, as well as the inner spiral arms. The fainter outer spiral arms and interarm regions are also evident in the MIR map. Spectral imaging of the central 3'x3' (4 kpc x 4 kpc) field allows us to investigate five regions of different environments. The various MIR components (very small grains, polycyclic aromatic hydrocarbon (PAH) molecules, ionic lines) are analyzed for different regions throughout the galaxy. In the total 4\mu m to 18\mu m wavelength range, the PAHs dominate the luminosity, contributing between 60% in the nuclear and bulge regions and 90% in the less active, interarm regions. Throughout the galaxy, the underlying continuum emission from the small grains is always a smaller contribution in the total MIR wavelength regime, peaking in the nuclear and bulge components. The implications of using broad-band filters only to characterize the mid-infrared emission of galaxies, a commonly used ISOCAM observation mode, are discussed. We present the first quantitative analysis of new H-alpha and 6cm VLA+Effelsberg radio continuum maps of M83. The distribution of the MIR emission is compared with that of the CO, HI, R band, H-alpha and 6cm radio. A striking correlation is found between the intensities in the two mid-infrared filter bands and the 6cm radio continuum. To explain the tight mid-infrared-radio correlation we propose the anchoring of magnetic field lines in the photoionized shells of gas clouds.Comment: 22 pages, 15 figures. Accepted for publication in A&

    Individualisation of time-motion analysis : a method comparison and case report series

    Get PDF
    © Georg Thieme Verlag KG. This study compared the intensity distribution of time-motion analysis data, when speed zones were categorized by different methods. 12 U18 players undertook a routine battery of laboratory- and field-based assessments to determine their running speed corresponding to the respiratory compensation threshold (RCT), maximal aerobic speed (MAS), maximal oxygen consumption (vVO 2max ) and maximal sprint speed (MSS). Players match-demands were tracked using 5 Hz GPS units in 22 fixtures (50 eligible match observations). The percentage of total distance covered running at high-speed (%HSR), very-high speed (%VHSR) and sprinting were determined using the following speed thresholds: 1) arbitrary; 2) individualised (IND) using RCT, vVO 2max and MSS; 3) individualised via MAS per se; 4) individualised via MSS per se; and 5) individualised using MAS and MSS as measures of locomotor capacities (LOCO). Using MSS in isolation resulted in 61 % and 39 % of player's % HSR and % VHSR, respectively, being incorrectly interpreted, when compared to the IND technique. Estimating the RCT from fractional values of MAS resulted in erroneous interpretations of % HSR in 50 % of cases. The present results suggest that practitioners and researchers should avoid using singular fitness characteristics to individualise the intensity distribution of time-motion analysis data. A combination of players' anaerobic threshold, MAS, and MSS characteristics are recommended to individualise player-tracking data
    • …
    corecore