7,266 research outputs found

    Toward a script theory of guidance in computer-supported collaborative learning

    Get PDF
    This article presents an outline of a script theory of guidance for computer-supported collaborative learning (CSCL). With its four types of components of internal and external scripts (play, scene, role, and scriptlet) and seven principles, this theory addresses the question how CSCL practices are shaped by dynamically re-configured internal collaboration scripts of the participating learners. Furthermore, it explains how internal collaboration scripts develop through participation in CSCL practices. It emphasizes the importance of active application of subject matter knowledge in CSCL practices, and it prioritizes transactive over non-transactive forms of knowledge application in order to facilitate learning. Further, the theory explains how external collaboration scripts modify CSCL practices and how they influence the development of internal collaboration scripts. The principles specify an optimal scaffolding level for external collaboration scripts and allow for the formulation of hypotheses about the fading of external collaboration scripts. Finally, the article points towards conceptual challenges and future research questions

    High accuracy calculation of 6s -> 7s parity nonconserving amplitude in Cs

    Get PDF
    We calculated the parity nonconserving (PNC) 6s -> 7s amplitude in Cs. In the Dirac-Coulomb approximation our result is in a good agreement with other calculations. Breit corrections to the PNC amplitude and to the Stark-induced amplitude β\beta are found to be -0.4% and -1% respectively. The weak charge of 133^{133}Cs is QW=72.5±0.7Q_W=-72.5 \pm 0.7 in agreement with the standard model.Comment: 4 pages, LaTeX2e, uses revtex4.cls, submitted to PR

    Sleep Disturbances and Glucose Metabolism in Older Adults: The Cardiovascular Health Study.

    Get PDF
    ObjectiveWe examined the associations of symptoms of sleep-disordered breathing (SDB), which was defined as loud snoring, stopping breathing for a while during sleep, and daytime sleepiness, and insomnia with glucose metabolism and incident type 2 diabetes in older adults.Research design and methodsBetween 1989 and 1993, the Cardiovascular Health Study recruited 5,888 participants ≥65 years of age from four U.S. communities. Participants reported SDB and insomnia symptoms yearly through 1989-1994. In 1989-1990, participants underwent an oral glucose tolerance test, from which insulin secretion and insulin sensitivity were estimated. Fasting glucose levels were measured in 1989-1990 and again in 1992-1993, 1994-1995, 1996-1997, and 1998-1999, and medication use was ascertained yearly. We determined the cross-sectional associations of sleep symptoms with fasting glucose levels, 2-h glucose levels, insulin sensitivity, and insulin secretion using generalized estimated equations and linear regression models. We determined the associations of updated and averaged sleep symptoms with incident diabetes in Cox proportional hazards models. We adjusted for sociodemographics, lifestyle factors, and medical history.ResultsObserved apnea, snoring, and daytime sleepiness were associated with higher fasting glucose levels, higher 2-h glucose levels, lower insulin sensitivity, and higher insulin secretion. The risk of the development of type 2 diabetes was positively associated with observed apnea (hazard ratio [HR] 1.84 [95% CI 1.19-2.86]), snoring (HR 1.27 [95% CI 0.95-1.71]), and daytime sleepiness (HR 1.54 [95% CI 1.13-2.12]). In contrast, we did not find consistent associations between insomnia symptoms and glucose metabolism or incident type 2 diabetes.ConclusionsEasily collected symptoms of SDB are strongly associated with insulin resistance and the incidence of type 2 diabetes in older adults. Monitoring glucose metabolism in such patients may prove useful in identifying candidates for lifestyle or pharmacological therapy. Further studies are needed to determine whether insomnia symptoms affect the risk of diabetes in younger adults

    Wind farm facilities in Germany kill noctule bats from near and far

    Get PDF
    Over recent years, it became widely accepted that alternative, renewable energy may come at some risk for wildlife, for example, when wind turbines cause large numbers of bat fatalities. To better assess likely populations effects of wind turbine related wildlife fatalities, we studied the geographical origin of the most common bat species found dead below German wind turbines, the noctule bat (Nyctalus noctula). We measured stable isotope ratios of non-exchangeable hydrogen in fur keratin to separate migrants from local individuals, used a linear mixed-effects model to identify temporal, spatial and biological factors explaining the variance in measured stable isotope ratios and determined the geographical breeding provenance of killed migrants using isoscape origin models. We found that 72% of noctule bat casualties (n = 136) were of local origin, while 28% were long-distance migrants. These findings highlight that bat fatalities at German wind turbines may affect both local and distant populations. Our results indicated a sex and age-specific vulnerability of bats towards lethal accidents at turbines, i.e. a relatively high proportion of killed females were recorded among migratory individuals, whereas more juveniles than adults were recorded among killed bats of local origin. Migratory noctule bats were found to originate from distant populations in the Northeastern parts of Europe. The large catchment areas of German wind turbines and high vulnerability of female and juvenile noctule bats call for immediate action to reduce the negative cross-boundary effects of bat fatalities at wind turbines on local and distant populations. Further, our study highlights the importance of implementing effective mitigation measures and developing species and scale-specific conservation approaches on both national and international levels to protect source populations of bats. The efficacy of local compensatory measures appears doubtful, at least for migrant noctule bats, considering the large geographical catchment areas of German wind turbines for this species

    Nerve Agent Hydrolysis Activity Designed into a Human Drug Metabolism Enzyme

    Get PDF
    Organophosphorus (OP) nerve agents are potent suicide inhibitors of the essential neurotransmitter-regulating enzyme acetylcholinesterase. Due to their acute toxicity, there is significant interest in developing effective countermeasures to OP poisoning. Here we impart nerve agent hydrolysis activity into the human drug metabolism enzyme carboxylesterase 1. Using crystal structures of the target enzyme in complex with nerve agent as a guide, a pair of histidine and glutamic acid residues were designed proximal to the enzyme's native catalytic triad. The resultant variant protein demonstrated significantly increased rates of reactivation following exposure to sarin, soman, and cyclosarin. Importantly, the addition of these residues did not alter the high affinity binding of nerve agents to this protein. Thus, using two amino acid substitutions, a novel enzyme was created that efficiently converted a group of hemisubstrates, compounds that can start but not complete a reaction cycle, into bona fide substrates. Such approaches may lead to novel countermeasures for nerve agent poisoning

    p53 and P-glycoprotein are often co-expressed and are associated with poor prognosis in breast cancer.

    Get PDF
    Expression of both P-glycoprotein (P-gp) and mutant p53 have recently been reported to be associated with poor prognosis of breast cancer. The expression of P-gp is associated in vitro and in vivo with cross-resistance to several anti-cancer drugs. p53 plays a regulatory role in apoptosis, and mutant p53 has been suggested to be involved in drug resistance. Interestingly, in vitro experiments have shown that mutant p53 can activate the promoter of the MDR1 gene, which encodes P-gp. We investigated whether p53 and P-gp are simultaneously expressed in primary breast cancer cells and analysed the impact of the co-expression on patients prognosis. Immunohistochemistry was used to investigate P-gp expression (JSB-1, C219) and nuclear p53 accumulation (DO-7) in 20 operable chemotherapy untreated and 30 locally advanced breast cancers undergoing neoadjuvant chemotherapy with doxorubicin and cyclophosphamide. Double immunostaining showed that P-gp expression and nuclear p53 accumulation often occur concomitantly in the same tumour cells. A correlation between p53 and P-gp expression was found in all 50 breast cancers (P = 0.003; Fisher's exact test). P-gp expression, nuclear p53 accumulation, and co-expression of p53 and P-gp were more frequently observed in locally advanced breast cancers than in operable breast cancers (P = 0.0004, P = 0.048; P = 0.002 respectively. Fisher's exact test). Co-expression of p53 and P-gp was the strongest prognostic factor for shorter survival by multivariate analysis (P = 0.004) in the group of locally advanced breast cancers (univariate analysis: P = 0.0007). Only 3 out of 13 samples sequentially taken before and after chemotherapy displayed a change in P-gp or p53 staining. In conclusion, nuclear p53 accumulation is often associated with P-gp expression in primary breast cancer, and simultaneous expression of p53 and P-gp is associated with shorter survival in locally advanced breast cancer patients. Co-expression of P-gp and mutant p53 belong to a series of molecular events resulting in a more aggressive phenotype, drug resistance and poor prognosis

    Stability of a vortex in a small trapped Bose-Einstein condensate

    Full text link
    A second-order expansion of the Gross-Pitaevskii equation in the interaction parameter determines the thermodynamic critical angular velocity Omega_c for the creation of a vortex in a small axisymmetric condensate. Similarly, a second-order expansion of the Bogoliubov equations determines the (negative) frequency omega_a of the anomalous mode. Although Omega_c = -omega_a through first order, the second-order contributions ensure that the absolute value |omega_a| is always smaller than the critical angular velocity Omega_c. With increasing external rotation Omega, the dynamical instability of the condensate with a vortex disappears at Omega*=|omega_a|, whereas the vortex state becomes energetically stable at the larger value Omega_c. Both second-order contributions depend explicitly on the axial anisotropy of the trap. The appearance of a local minimum of the free energy for a vortex at the center determines the metastable angular velocity Omega_m. A variational calculation yields Omega_m=|\omega_a| to first order (hence Omega_m also coincides with the critical angular velocity Omega_c to this order). Qualitatively, the scenario for the onset of stability in the weak-coupling limit is the same as that found in the strong-coupling (Thomas-Fermi) limit.Comment: 8 pages, RevTe

    Adiabaticity Criterion for Moving Vortices in Dilute Bose-Einstein Condensates

    Full text link
    Considering a moving vortex line in a dilute atomic Bose-Einstein condensate within time-dependent Hartree-Fock-Bogoliubov-Popov theory, we derive a criterion for the quasiparticle excitations to follow the vortex core rigidly. The assumption of adiabaticity, which is crucial for the validity of the stationary self-consistent theories in describing such time-dependent phenomena, is shown to imply a stringent criterion for the velocity of the vortex line. Furthermore, this condition is shown to be violated in the recent vortex precession experiments.Comment: 4 pages, 1 figur

    Stability of rotating states in a weakly-interacting Bose-Einstein condensate

    Full text link
    We investigate the lowest state of a rotating, weakly-interacting Bose-Einstein condensate trapped in a harmonic confining potential that is driven by an infinitesimally asymmetric perturbation. Although in an axially-symmetric confining potential the gas has an axially-symmetric single-particle density distribution, we show that in the presence of the small asymmetric perturbation its lowest state is the one given by the mean-field approximation, which is a broken-symmetric state. We also estimate the rate of relaxation of angular momentum when the gas is no longer driven by the asymmetric perturbation and identify two regimes of "slow" and "fast" relaxation. States of certain symmetry are found to be more robust.Comment: 6 pages, RevTe
    corecore