23,402 research outputs found
Flux sensing device using a tubular core with toroidal gating coil and solenoidal output coil wound thereon Patent
Flux gate magnetometer with toroidal gating coil and solenoidal output coil for signal modulation or amplificatio
Fate of the Peak Effect in a Type-II Superconductor: Multicriticality in the Bragg-Glass Transition
We have used small-angle-neutron-scattering (SANS) and ac magnetic
susceptibility to investigate the global magnetic field H vs temperature T
phase diagram of a single crystal Nb in which a first-order transition of
Bragg-glass melting (disordering), a peak effect, and surface superconductivity
are all observable. It was found that the disappearance of the peak effect is
directly related to a multicritical behavior in the Bragg-glass transition.
Four characteristic phase boundary lines have been identified on the H-T plane:
a first-order line at high fields, a mean-field-like continuous transition line
at low fields, and two continuous transition line associated with the onset of
surface and bulk superconductivity. All four lines are found to meet at a
multicritical point.Comment: 4 figure
Decay of weak turbulence
Weak turbulence fields generated by single and multiple stage grids covering Reynolds numbers between 7 and 70 showing decay of energy spectr
P-wave diffusion in fluid-saturated medium
This paper considers the propagating P-waves in the fluid-saturated mediums that are categorized to fall into two distinct groups: insoluble and soluble mediums. P-waves are introduced with slowness in accordance to Snell Law and are shown to relate to the medium displacement and wave diffusion. Consequently, the results bear out that the propagating P-waves in the soluble medium share similar diffusive characteristic as of insoluble medium. Nonetheless, our study on fluid density in the mediums show that high density fluid promotes diffusive characteristic whiles low density fluid endorses non-diffusive P-wav
Linear Size Optimal q-ary Constant-Weight Codes and Constant-Composition Codes
An optimal constant-composition or constant-weight code of weight has
linear size if and only if its distance is at least . When , the determination of the exact size of such a constant-composition or
constant-weight code is trivial, but the case of has been solved
previously only for binary and ternary constant-composition and constant-weight
codes, and for some sporadic instances.
This paper provides a construction for quasicyclic optimal
constant-composition and constant-weight codes of weight and distance
based on a new generalization of difference triangle sets. As a result,
the sizes of optimal constant-composition codes and optimal constant-weight
codes of weight and distance are determined for all such codes of
sufficiently large lengths. This solves an open problem of Etzion.
The sizes of optimal constant-composition codes of weight and distance
are also determined for all , except in two cases.Comment: 12 page
A least-squares implicit RBF-FD closest point method and applications to PDEs on moving surfaces
The closest point method (Ruuth and Merriman, J. Comput. Phys.
227(3):1943-1961, [2008]) is an embedding method developed to solve a variety
of partial differential equations (PDEs) on smooth surfaces, using a closest
point representation of the surface and standard Cartesian grid methods in the
embedding space. Recently, a closest point method with explicit time-stepping
was proposed that uses finite differences derived from radial basis functions
(RBF-FD). Here, we propose a least-squares implicit formulation of the closest
point method to impose the constant-along-normal extension of the solution on
the surface into the embedding space. Our proposed method is particularly
flexible with respect to the choice of the computational grid in the embedding
space. In particular, we may compute over a computational tube that contains
problematic nodes. This fact enables us to combine the proposed method with the
grid based particle method (Leung and Zhao, J. Comput. Phys. 228(8):2993-3024,
[2009]) to obtain a numerical method for approximating PDEs on moving surfaces.
We present a number of examples to illustrate the numerical convergence
properties of our proposed method. Experiments for advection-diffusion
equations and Cahn-Hilliard equations that are strongly coupled to the velocity
of the surface are also presented
Detecting Full N-Particle Entanglement in Arbitrarily High-Dimensional Systems with Bell-Type Inequality
We derive a set of Bell-type inequalities for arbitrarily high-dimensional
systems, based on the assumption of partial separability in the hybrid
local-nonlocal hidden variable model. Partially entangled states would not
violate the inequalities, and thus upon violation, these Bell-type inequalities
are sufficient conditions to detect the full -particle entanglement and
validity of the hybrid local-nonlocal hidden variable description.Comment: 6 page
Bell inequalities for three particles
We present tight Bell inequalities expressed by probabilities for three four-
and five-dimensional systems. The tight structure of Bell inequalities for
three -dimensional systems (qudits) is proposed. Some interesting Bell
inequalities of three qubits reduced from those of three qudits are also
studied.Comment: 8 pages, 3 figures. Accepted for publication in Phys. Rev.
Recommended from our members
Polyisoprene Captured Sulfur Nanocomposite Materials for High-Areal-Capacity Lithium Sulfur Battery
A polyisoprene-sulfur (PIPS) copolymer and nano sulfur composite material (90 wt % sulfur) is synthesized through inverse vulcanization of PIP polymer with micrometer-sized sulfur particles for high-areal-capacity lithium sulfur batteries. The polycrystalline structure and nanodomain nature of the copolymer are revealed through high-resolution transmission electron microscopy (HRTEM). PIP polymer is also used as binders for the electrode to further capture the dissovlved polysulfides. A high areal capacity of ca. 7.0 mAh/cm2 and stable cycling are achieved based on the PIPS nanosulfur composite with a PIP binder, crucial to commercialization of lithium sulfur batteries. The chemical confinement both at material and electrode level alleviates the diffusion of polysulfides and the shuttle effect. The sulfur electrodes, both fresh and cycled, are analyzed through scanning electron microscopy (SEM). This approach enables scalable material production and high sulfur utilization at the cell level
- …