6,277 research outputs found

    Atomic Entanglement vs Photonic Visibility for Quantum Criticality of Hybrid System

    Get PDF
    To characterize the novel quantum phase transition for a hybrid system consisting of an array of coupled cavities and two-level atoms doped in each cavity, we study the atomic entanglement and photonic visibility in comparison with the quantum fluctuation of total excitations. Analytical and numerical simulation results show the happen of quantum critical phenomenon similar to the Mott insulator to superfluid transition. Here, the contour lines respectively representing the atomic entanglement, photonic visibility and excitation variance in the phase diagram are consistent in the vicinity of the non-analytic locus of atomic concurrences.Comment: 4 pages, 2 figure

    Model-based spacecraft and mission design for the evaluation of technology

    Get PDF
    In order to meet the future vision of robotic missions, engineers will face intricate mission concepts, new operational approaches, and technologies that have yet to be developed. The concept of smaller, model driven projects helps this transition by including life-cycle cost as part of the decision making process. For example, since planetary exploration missions have cost ceilings and short development periods, heritage flight hardware is utilized. However, conceptual designs that rely solely on heritage technology will result in estimates that may not be truly representative of the actual mission being designed and built. The Laboratory for Spacecraft and Mission Design (LSMD) at the California Institute of Technology is developing integrated concurrent models for mass and cost estimations. The purpose of this project is to quantify the infusion of specific technologies where the data would be useful in guiding technology developments leading up to a mission. This paper introduces the design-to-cost model to determine the implications of various technologies on the spacecraft system in a collaborative engineering environment. In addition, comparisons of the benefits of new or advanced technologies for future deep space missions are examined

    The B→Xsl+l−B\to X_sl^+l^- and B→XsγB\to X_s \gamma decays with the fourth generation

    Full text link
    If the fourth generation fermions exist, the new quarks could influence the branching ratios of the decays of B→XsÎłB\to X_s \gamma and B→Xsl+l−B\to X_sl^+l^-. We obtain two solutions of the fourth generation CKM factor Vtâ€Čs∗Vtâ€ČbV^{*}_{t^{'}s}V_{t^{'}b} from the decay of B→XsÎłB\to X_s \gamma. We use these two solutions to calculate the new contributions of the fourth generation quark to Wilson coefficients of the decay of B→Xsl+l−B\to X_sl^+l^-. The branching ratio and the forward-backward asymmetry of the decay of B→Xsl+l−B\to X_sl^+l^- in the two cases are calculated. Our results are quite different from that of SM in one case, almost same in another case. If Nature chooses the formmer, the BB meson decays could provide a possible test of the forth generation existence.Comment: 10 pages, 5 figure

    Sperm repository for a breeding program of the eastern oyster crassostrea virginica: Sample collection, processing, cryopreservation, and data management plan

    Get PDF
    The Eastern oyster Crassostrea virginica (Family Ostreidae) is one of the most important fishery and aquaculture species in the U.S. and is a keystone species for coastal reefs. A breeding program was initiated in 2019 to support the fast‐growing aquaculture industry culturing this species in the Gulf of Mexico. Oysters from 17 wild populations in embayment along the U.S. Gulf of Mexico coast from southwest Florida to the Matagorda Bay, Texas were used as broodstock for the program to maximize genetic diversity in the base population. A sperm repository of the broodstock was established to support the breeding project. The goal of this study was to demonstrate the sperm sample collection, processing, cryopreservation, and the data management plan involved in the establishment of a sperm germplasm repository of base populations. The supporting objectives were to: (1) develop a data management plan for the sperm repository; (2) streamline the procedure for sample collection, processing, and cryopreservation; (3) incorporate sperm quality analysis into the procedure, and (4) archive the cryopreserved samples as a repository for future use in the breeding program. This sperm repository included a total of 102 male oysters from the 17 collection sites (six oysters per site). A data management plan was developed with six categories, including sample collection, phenotype, fresh sperm, genotype, cryopreservation, and post‐thaw sperm, as guide for data collection. Sperm collection was accomplished by strip spawn, and fresh sperm production, motility, and fertility were recorded for quality analysis. Cryopreserved sperm samples were sorted, labelled, archived, and stored in liquid nitrogen for future use. Post‐thaw motility (1–30%) and plasm membrane integrity (15.34–70.36%) were recorded as post‐thaw quality parameters. Overall, this study demonstrated a streamlined procedure of oyster sperm collection, processing, and cryopreservation for establishing a sperm repository that can serve as a template for construction of oyster germplasm repositories for breeding programs

    The evolution of stellar metallicity gradients of the Milky Way disk from LSS-GAC main sequence turn-off stars: a two-phase disk formation history?

    Full text link
    We use 297 042 main sequence turn-off stars selected from the LSS-GAC to determine the radial and vertical gradients of stellar metallicity of the Galactic disk in the anti-center direction. We determine ages of those turn-off stars by isochrone fitting and measure the temporal variations of metallicity gradients. Our results show that the gradients, both in the radial and vertical directions, exhibit significant spatial and temporal variations. The radial gradients yielded by stars of oldest ages (>11 Gyr) are essentially zero at all heights from the disk midplane, while those given by younger stars are always negative. The vertical gradients deduced from stars of oldest ages (>11Gyr) are negative and show only very weak variations with the Galactocentric distance in the disk plane, RR, while those yielded by younger stars show strong variations with RR. After being essentially flat at the earliest epochs of disk formation, the radial gradients steepen as age decreases, reaching a maxima (steepest) at age 7-8 Gyr, and then they flatten again. Similar temporal trends are also found for the vertical gradients. We infer that the assemblage of the Milky Way disk may have experienced at least two distinct phases. The earlier phase is probably related to a slow, pressure-supported collapse of gas, when the gas settles down to the disk mainly in the vertical direction. In the later phase, there are significant radial flows of gas in the disk, and the rate of gas inflow near the solar neighborhood reaches a maximum around a lookback time of 7-8 Gyr. The transition of the two phases occurs around a lookback time between 8 and 11 Gyr. The two phases may be responsible for the formation of the Milky Way thick and thin disks, respectively. And, as a consequence, we recommend that stellar age is a natural, physical criterion to distinguish thin and thick disk stars. ... (abridged)Comment: 31 pages, 17 figures, Accepted for publication in a special issue of Research in Astronomy and Astrophysics on LAMOST science

    A cosmic ray super high multicore family event. 1: Experiment and general features

    Get PDF
    Information on the fragmentation region in super high energy hadronic interactions can be obtained through the observations of gamma-ray families produced by cosmic rays. Gamma-ray families with the sum of E sub gamma or 1000 TeV are receiving increasing interests in emulsion chamber experiments. There exist some complications caused by the superposition of nuclear and electromagnetic cascades and the uncertainty in the nature of the primary particles. These complications usually make the conclusions drawn from various interesting phenomena observed in family events not so definite. An interesting family event KO E19, which is likely to have suffered only very slight disturbances is described. It was found in the Mt. Kambala emulsion chamber experiment. The production height of the event is determined to be H=(70 + or - 30)m and some conclusions are given

    Intensities of high-energy cosmic rays at Mount Kanbala

    Get PDF
    The energy spectra of atmospheric cosmic rays at Mt. Kanbala (520 g/sq cm.) are measured with emulsion chambers. The power indexes of the spectra are values of about 2.0 for both gamma-rays and hadrons. Those fluxes are consistent with the ones expected from the model of primary cosmic rays with heavy nuclei of high content in the energy around 10 to the 15th power eV

    Peierls distorted chain as a quantum data bus for quantum state transfer

    Full text link
    We systematically study the transfer of quantum state of electron spin as the flying qubit along a half-filled Peierls distorted tight-binding chain described by the Su-Schrieffer-Heeger (SSH) model, which behaves as a quantum data bus. This enables a novel physical mechanism for quantum communication with always-on interaction: the effective hopping of the spin carrier between sites AA and BB connected to two sites in this SSH chain can be induced by the quasi-excitations of the SSH model. As we prove, it is the Peierls energy gap of the SSH quasi-excitations that plays a crucial role to protect the robustness of the quantum state transfer process. Moreover, our observation also indicates that such a scheme can also be employed to explore the intrinsic property of the quantum system.Comment: 10 pages, 6 figure

    Ages and Masses of 0.64 million Red Giant Branch stars from the LAMOST Galactic Spectroscopic Survey

    Full text link
    We present a catalog of stellar age and mass estimates for a sample of 640\,986 red giant branch (RGB) stars of the Galactic disk from the LAMOST Galactic Spectroscopic Survey (DR4). The RGB stars are distinguished from the red clump stars utilizing period spacing derived from the spectra with a machine learning method based on kernel principal component analysis (KPCA). Cross-validation suggests our method is capable of distinguishing RC from RGB stars with only 2 per cent contamination rate for stars with signal-to-noise ratio (SNR) higher than 50. The age and mass of these RGB stars are determined from their LAMOST spectra with KPCA method by taking the LAMOST - KeplerKepler giant stars having asteroseismic parameters and the LAMOST-TGAS sub-giant stars based on isochrones as training sets. Examinations suggest that the age and mass estimates of our RGB sample stars with SNR >> 30 have a median error of 30 per cent and 10 per cent, respectively. Stellar ages are found to exhibit positive vertical and negative radial gradients across the disk, and the age structure of the disk is strongly flared across the whole disk of 6<R<136<R<13\,kpc. The data set demonstrates good correlations among stellar age, [Fe/H] and [α\alpha/Fe]. There are two separate sequences in the [Fe/H] -- [α\alpha/Fe] plane: a high--α\alpha sequence with stars older than ∌\sim\,8\,Gyr and a low--α\alpha sequence composed of stars with ages covering the whole range of possible ages of stars. We also examine relations between age and kinematic parameters derived from the Gaia DR2 parallax and proper motions. Both the median value and dispersion of the orbital eccentricity are found to increase with age. The vertical angular momentum is found to fairly smoothly decrease with age from 2 to 12\,Gyr, with a rate of about −-50\,kpc\,km\,s−1^{-1}\,Gyr−1^{-1}. A full table of the catalog is public available online.Comment: 16 pages, 22 figures,accepted by MNRA
    • 

    corecore