18,196 research outputs found
Universality class of quantum criticality for strongly repulsive spin-1 bosons with antiferromagnetic spin-exchange interaction
Using the thermodynamic Bethe ansatz equations we study the quantum phase
diagram, thermodynamics and criticality of one-dimensional spin-1 bosons with
strongly repulsive density-density and antiferromagnetic spin-exchange
interactions. We analytically derive a high precision equation of state from
which the Tomonaga-Luttinger liquid physics and quantum critical behavior of
the system are computed. We obtain explicit forms for the scaling functions
near the critical points yielding the dynamical exponent and correlation
length exponent for the quantum phase transitions driven by either
the chemical potential or the magnetic field. Consequently, we further
demonstrate that quantum criticality of the system can be mapped out from the
finite temperature density and magnetization profiles of the 1D trapped gas.
Our results provide the physical origin of quantum criticality in a 1D
many-body system beyond the Tomonaga-Luttinger liquid description.Comment: 12 pages, 11 figure
Two problems related to prescribed curvature measures
Existence of convex body with prescribed generalized curvature measures is
discussed, this result is obtained by making use of Guan-Li-Li's innovative
techniques. In surprise, that methods has also brought us to promote
Ivochkina's estimates for prescribed curvature equation in \cite{I1, I}.Comment: 12 pages, Corrected typo
Thermal-magnetic noise measurement of spin-torque effects on ferromagnetic resonance in MgO-based magnetic tunnel junctions
Thermal-magnetic noise at ferromagnetic resonance (T-FMR) can be used to
measure magnetic perpendicular anisotropy of nanoscale magnetic tunnel
junctions (MTJs). For this purpose, T-FMR measurements were conducted with an
external magnetic field up to 14 kOe applied perpendicular to the film surface
of MgO-based MTJs under a dc bias. The observed frequency-field relationship
suggests that a 20 A CoFeB free layer has an effective demagnetization field
much smaller than the intrinsic bulk value of CoFeB, with 4PiMeff = (6.1 +/-
0.3) kOe. This value is consistent with the saturation field obtained from
magnetometry measurements on extended films of the same CoFeB thickness.
In-plane T-FMR on the other hand shows less consistent results for the
effective demagnetization field, presumably due to excitations of more complex
modes. These experiments suggest that the perpendicular T-FMR is preferred for
quantitative magnetic characterization of nanoscale MTJs.Comment: 10 pages, 3 figures, accepted by AP
Explaining Aviation Safety Incidents Using Deep Temporal Multiple Instance Learning
Although aviation accidents are rare, safety incidents occur more frequently
and require a careful analysis to detect and mitigate risks in a timely manner.
Analyzing safety incidents using operational data and producing event-based
explanations is invaluable to airline companies as well as to governing
organizations such as the Federal Aviation Administration (FAA) in the United
States. However, this task is challenging because of the complexity involved in
mining multi-dimensional heterogeneous time series data, the lack of
time-step-wise annotation of events in a flight, and the lack of scalable tools
to perform analysis over a large number of events. In this work, we propose a
precursor mining algorithm that identifies events in the multidimensional time
series that are correlated with the safety incident. Precursors are valuable to
systems health and safety monitoring and in explaining and forecasting safety
incidents. Current methods suffer from poor scalability to high dimensional
time series data and are inefficient in capturing temporal behavior. We propose
an approach by combining multiple-instance learning (MIL) and deep recurrent
neural networks (DRNN) to take advantage of MIL's ability to learn using weakly
supervised data and DRNN's ability to model temporal behavior. We describe the
algorithm, the data, the intuition behind taking a MIL approach, and a
comparative analysis of the proposed algorithm with baseline models. We also
discuss the application to a real-world aviation safety problem using data from
a commercial airline company and discuss the model's abilities and
shortcomings, with some final remarks about possible deployment directions
Specific heat and thermal conductivity of ferromagnetic magnons in Yttrium Iron Garnet
The specific heat and thermal conductivity of the insulating ferrimagnet
YFeO (Yttrium Iron Garnet, YIG) single crystal were measured
down to 50 mK. The ferromagnetic magnon specific heat shows a
characteristic dependence down to 0.77 K. Below 0.77 K, a downward
deviation is observed, which is attributed to the magnetic dipole-dipole
interaction with typical magnitude of 10 eV. The ferromagnetic magnon
thermal conductivity does not show the characteristic
dependence below 0.8 K. To fit the data, both magnetic defect
scattering effect and dipole-dipole interaction are taken into account. These
results complete our understanding of the thermodynamic and thermal transport
properties of the low-lying ferromagnetic magnons.Comment: 5 pages, 5 figure
Exactly solvable models and ultracold Fermi gases
Exactly solvable models of ultracold Fermi gases are reviewed via their
thermodynamic Bethe Ansatz solution. Analytical and numerical results are
obtained for the thermodynamics and ground state properties of two- and
three-component one-dimensional attractive fermions with population imbalance.
New results for the universal finite temperature corrections are given for the
two-component model. For the three-component model, numerical solution of the
dressed energy equations confirm that the analytical expressions for the
critical fields and the resulting phase diagrams at zero temperature are highly
accurate in the strong coupling regime. The results provide a precise
description of the quantum phases and universal thermodynamics which are
applicable to experiments with cold fermionic atoms confined to one-dimensional
tubes.Comment: based on an invited talk at Statphys24, Cairns (Australia) 2010. 16
pages, 6 figure
- …