809 research outputs found

    Information Entropy in Cosmology

    Full text link
    The effective evolution of an inhomogeneous cosmological model may be described in terms of spatially averaged variables. We point out that in this context, quite naturally, a measure arises which is identical to a fluid model of the `Kullback-Leibler Relative Information Entropy', expressing the distinguishability of the local inhomogeneous mass density field from its spatial average on arbitrary compact domains. We discuss the time-evolution of `effective information' and explore some implications. We conjecture that the information content of the Universe -- measured by Relative Information Entropy of a cosmological model containing dust matter -- is increasing.Comment: LateX, PRLstyle, 4 pages; to appear in PR

    Global gravitational instability of FLRW backgrounds - interpreting the dark sectors

    Get PDF
    The standard model of cosmology is based on homogeneous-isotropic solutions of Einstein's equations. These solutions are known to be gravitationally unstable to local inhomogeneous perturbations, commonly described as evolving on a background given by the same solutions. In this picture, the FLRW backgrounds are taken to describe the average over inhomogeneous perturbations for all times. We study in the present article the (in)stability of FLRW dust backgrounds within a class of averaged inhomogeneous cosmologies. We examine the phase portraits of the latter, discuss their fixed points and orbital structure and provide detailed illustrations. We show that FLRW cosmologies are unstable in some relevant cases: averaged models are driven away from them through structure formation and accelerated expansion. We find support for the proposal that the dark components of the FLRW framework may be associated to these instability sectors. Our conclusion is that FLRW cosmologies have to be considered critically as for their role to serve as reliable models for the physical background.Comment: 15 pages, 13 figures, 1 table. Matches published version in CQ

    Lagrangian theory of structure formation in relativistic cosmology I: Lagrangian framework and definition of a nonperturbative approximation

    Full text link
    In this first paper we present a Lagrangian framework for the description of structure formation in general relativity, restricting attention to irrotational dust matter. As an application we present a self-contained derivation of a general-relativistic analogue of Zel'dovich's approximation for the description of structure formation in cosmology, and compare it with previous suggestions in the literature. This approximation is then investigated: paraphrasing the derivation in the Newtonian framework we provide general-relativistic analogues of the basic system of equations for a single dynamical field variable and recall the first-order perturbation solution of these equations. We then define a general-relativistic analogue of Zel'dovich's approximation and investigate its implications by functionally evaluating relevant variables, and we address the singularity problem. We so obtain a possibly powerful model that, although constructed through extrapolation of a perturbative solution, can be used to put into practice nonperturbatively, e.g. problems of structure formation, backreaction problems, nonlinear properties of gravitational radiation, and light-propagation in realistic inhomogeneous universe models. With this model we also provide the key-building blocks for initializing a fully relativistic numerical simulation.Comment: 21 pages, content matches published version in PRD, discussion on singularities added, some formulas added, some rewritten and some correcte

    Relativistic cosmological perturbation scheme on a general background: scalar perturbations for irrotational dust

    Full text link
    In standard perturbation approaches and N-body simulations, inhomogeneities are described to evolve on a predefined background cosmology, commonly taken as the homogeneous-isotropic solutions of Einstein's field equations (Friedmann-Lema\^itre-Robertson-Walker (FLRW) cosmologies). In order to make physical sense, this background cosmology must provide a reasonable description of the effective, i.e. spatially averaged, evolution of structure inhomogeneities also in the nonlinear regime. Guided by the insights that (i) the average over an inhomogeneous distribution of matter and geometry is in general not given by a homogeneous solution of general relativity, and that (ii) the class of FLRW cosmologies is not only locally but also globally gravitationally unstable in relevant cases, we here develop a perturbation approach that describes the evolution of inhomogeneities on a general background being defined by the spatially averaged evolution equations. This physical background interacts with the formation of structures. We derive and discuss the resulting perturbation scheme for the matter model `irrotational dust' in the Lagrangian picture, restricting our attention to scalar perturbations.Comment: 18 pages. Matches published version in CQ

    Effective inhomogeneous inflation: curvature inhomogeneities of the Einstein vacuum

    Get PDF
    We consider spatially averaged inhomogeneous universe models and argue that, already in the absence of sources, an effective scalar field arises through foliating and spatially averaging inhomogeneous geometrical curvature invariants of the Einstein vacuum. This scalar field (the `morphon') acts as an inflaton, if we prescribe a potential of some generic form. We show that, for any initially negative average spatial curvature, the morphon is driven through an inflationary phase and leads - on average - to a spatially flat, homogeneous and isotropic universe model, providing initial conditions for pre-heating and, by the same mechanism, a possibly natural self-exit.Comment: 9 pages, 2 figures, to appear in Class. Quant. Grav. as Fast Track Communicatio

    A cosmic equation of state for the inhomogeneous Universe: can a global far-from-equilibrium state explain Dark Energy?

    Full text link
    A system of effective Einstein equations for spatially averaged scalar variables of inhomogeneous cosmological models can be solved by providing a `cosmic equation of state'. Recent efforts to explain Dark Energy focus on `backreaction effects' of inhomogeneities on the effective evolution of cosmological parameters in our Hubble volume, avoiding a cosmological constant in the equation of state. In this Letter it is argued that, if kinematical backreaction effects are indeed of the order of the averaged density (or larger as needed for an accelerating domain of the Universe), then the state of our regional Hubble volume would have to be in the vicinity of a far-from-equilibrium state that balances kinematical backreaction and average density. This property, if interpreted globally, is shared by a stationary cosmos with effective equation of state peff=1/3ρeffp_{\rm eff} = -1/3 \rho_{\rm eff}. It is concluded that a confirmed explanation of Dark Energy by kinematical backreaction may imply a paradigmatic change of cosmology.Comment: 7 pages, matches published version in Class. Quant. Gra

    Cosmic Acceleration from Causal Backreaction with Recursive Nonlinearities

    Full text link
    We revisit the causal backreaction paradigm, in which the need for Dark Energy is eliminated via the generation of an apparent cosmic acceleration from the causal flow of inhomogeneity information coming in towards each observer from distant structure-forming regions. This second-generation formalism incorporates "recursive nonlinearities": the process by which already-established metric perturbations will then act to slow down all future flows of inhomogeneity information. Here, the long-range effects of causal backreaction are now damped, weakening its impact for models that were previously best-fit cosmologies. Nevertheless, we find that causal backreaction can be recovered as a replacement for Dark Energy via the adoption of larger values for the dimensionless `strength' of the clustering evolution functions being modeled -- a change justified by the hierarchical nature of clustering and virialization in the universe, occurring on multiple cosmic length scales simultaneously. With this, and with one new model parameter representing the slowdown of clustering due to astrophysical feedback processes, an alternative cosmic concordance can once again be achieved for a matter-only universe in which the apparent acceleration is generated entirely by causal backreaction effects. One drawback is a new degeneracy which broadens our predicted range for the observed jerk parameter j0Obsj_{0}^{\mathrm{Obs}}, thus removing what had appeared to be a clear signature for distinguishing causal backreaction from Cosmological Constant Λ\LambdaCDM. As for the long-term fate of the universe, incorporating recursive nonlinearities appears to make the possibility of an `eternal' acceleration due to causal backreaction far less likely; though this does not take into account gravitational nonlinearities or the large-scale breakdown of cosmological isotropy, effects not easily modeled within this formalism.Comment: 53 pages, 7 figures, 3 tables. This paper is an advancement of previous research on Causal Backreaction; the earlier work is available at arXiv:1109.4686 and arXiv:1109.515

    Performance of the optimized Post-Zel'dovich approximation for CDM models in arbitrary FLRW cosmologies

    Full text link
    We investigate the performance of the optimized Post-Zel'dovich approximation in three cold dark matter cosmologies. We consider two flat models with Ω0=1\Omega_0=1 (SCDM) and with Ω0=0.3\Omega_0=0.3 (Λ\LambdaCDM) and an open model with Ω0=0.3\Omega_0=0.3 (OCDM). We find that the optimization scheme proposed by Wei{\ss}, Gottl\"ober & Buchert (1996), in which the performance of the Lagrangian perturbation theory was optimized only for the Einstein-de Sitter cosmology, shows the excellent performances not only for SCDM model but also for both OCDM and Λ\LambdaCDM models. This universality of the excellent performance of the optimized Post-Zel'dovich approximation is explained by the fact that a relation between the Post-Zel'dovich order's growth factor E(a)E(a) and Zel'dovich order's one D(a)D(a), E(a)/D2(a)E(a)/D^2(a), is insensitive to the background cosmologies.Comment: 8 pages, 3 figures, LaTex using aaspp4.sty and epsf.sty, Accepted for publication in ApJ Letter

    Hydrodynamic approach to the evolution of cosmological structures

    Get PDF
    A hydrodynamic formulation of the evolution of large-scale structure in the Universe is presented. It relies on the spatially coarse-grained description of the dynamical evolution of a many-body gravitating system. Because of the assumed irrelevance of short-range (``collisional'') interactions, the way to tackle the hydrodynamic equations is essentially different from the usual case. The main assumption is that the influence of the small scales over the large-scale evolution is weak: this idea is implemented in the form of a large-scale expansion for the coarse-grained equations. This expansion builds a framework in which to derive in a controlled manner the popular ``dust'' model (as the lowest-order term) and the ``adhesion'' model (as the first-order correction). It provides a clear physical interpretation of the assumptions involved in these models and also the possibility to improve over them.Comment: 14 pages, 3 figures. Version to appear in Phys. Rev.
    corecore