A system of effective Einstein equations for spatially averaged scalar
variables of inhomogeneous cosmological models can be solved by providing a
`cosmic equation of state'. Recent efforts to explain Dark Energy focus on
`backreaction effects' of inhomogeneities on the effective evolution of
cosmological parameters in our Hubble volume, avoiding a cosmological constant
in the equation of state. In this Letter it is argued that, if kinematical
backreaction effects are indeed of the order of the averaged density (or larger
as needed for an accelerating domain of the Universe), then the state of our
regional Hubble volume would have to be in the vicinity of a
far-from-equilibrium state that balances kinematical backreaction and average
density. This property, if interpreted globally, is shared by a stationary
cosmos with effective equation of state peff=−1/3ρeff. It
is concluded that a confirmed explanation of Dark Energy by kinematical
backreaction may imply a paradigmatic change of cosmology.Comment: 7 pages, matches published version in Class. Quant. Gra