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FAST TRACK COMMUNICATION
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Abstract. We consider spatially averaged inhomogeneous universe models and argue
that, already in the absence of sources, an effective scalar field arises through foliating
and spatially averaging inhomogeneous geometrical curvature invariants of the Einstein
vacuum. This scalar field (the ‘morphon’) acts as an inflaton, if we prescribe a potential
of some generic form. We show that, for any initially negative average spatial curvature,
the morphon is driven through an inflationary phase and leads – on average – to a
spatially flat, homogeneous and isotropic universe model, providing initial conditions
for pre–heating and, by the same mechanism, a possibly natural self–exit.

1. Introduction

For about 30 years now, inflation [1] is the main paradigm used to explain the various

caveats of the Hot Big Bang scenario. In particular, the flatness, smoothness and

horizon issues [2] are often advocated to be solved by a long enough period of de Sitter–

like expansion, provoked by of a slow–rolling scalar (multi–)field that dominates over

the other components of the energy budget of the Universe [3]. The success of the

concept of inflation not only stems from its simplicity but also from the consequences

this framework bears, i.e. conservative predictions concerning scale invariance, the

tensor–to–scalar ratio, gaussianity of fluctuations, etc. However, as many paradigms

praised for their consequences, inflation lacks a physical cause. Indeed, despite several

attempts to justify the global predominance of a yet unobserved fundamental scalar

field, the existence of the inflaton remains a conundrum to theorists.

Confronted with this issue, physicists might roughly choose between three distinct

philosophies. Either a non–standard part of the particle physics spectrum, for instance,

the Higgs boson [4], or a pseudo Nambu–Goldstone boson [5], could be candidates for

the fundamental field whose potential part dominated the Early Universe. Or, a known

part of the physical fields could emulate an effective scalar field via a known process

like boson or fermion condensation [6]. Or, a neglected part in the underlying theories,
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due to their special nature or just due to idealizing assumptions, prevented us so far to

take into account physical effects that could lead to an inflationary era. The idea we

present here lies within this last line of thought by applying to inflation what has been

proposed previously for a conservative explanation of the dark energy problem through

inhomogeneities [7]. In concrete terms we shall provide a physical cause to inflation by

identifying the inflaton with an effective classical field that describes the averaged bulk

effect on the dynamics of inhomogeneities (also dubbed backreaction) prior to, during

and eventually after the inflationary era.

It is important to stress that the model expounded here pertains to the dynamics

of backreaction – described by a conservative set of equations and a minimal number

of physical assumptions – and not to a suitably chosen set of initial conditions.

Furthermore, as a natural starting point, the inhomogeneities we shall describe hereby

are due to geometry and a priori not related to the baryonic/dark matter, dark energy

or radiation content of the Universe [8]; we shall confine ourselves to inhomogeneities

in the gravitational field only. In other words, this model will demonstrate in simple

terms how inflation can naturally emerge out of vacuum inhomogeneities. This last term

does not refer to quantum vacuum fluctuations on a FLRW background (as practically

always used in the cosmological context), but to the average of classical fluctuations of

the gravitational field only.

2. Inhomogeneous universe models

Einstein’s equations are assumed to hold for a four–dimensional tube of the Early

Universe, featuring the 4−Ricci tensor Rµν = 0‡. We suggest further to foliate this

tube into three–dimensional space–like hypersurfaces according to the ADM formalism.

We here choose a comoving–synchronous line–element (in forthcoming papers the

embedding issue will be thoroughly addressed), ds2 = −dt2 + gijdX idXj, where the

proper time t labels the hypersurfaces and X i are Gaussian normal coordinates; gij are

the components of the full inhomogeneous 3−metric of the hypersurfaces of constant

proper time. In this metric the components of the 4−Ricci tensor can be expressed

geometrically through the three–dimensional extrinsic curvature Kij of the embedding

into spacetime, and instrinsic curvature Rij of the hypersurfaces at constant t with the

following well–known Gauß–Codazzi–Mainardi relations:

R00 = K̇ − Kij Kij , R0i = K|i − Kk
i||k , Rij = Rij − K̇ij − 2KikK

k
j + KKij , (1)

where a vertical slash denotes partial spatial derivative with respect to X i, a double

vertical slash covariant spatial differentiation with respect to the 3−metric, and an

overdot the covariant time derivative. We end up with the following set of equations

(supplemented by the defining equation for Kij):

ġij = −2 Kij ,−K̇+Kij Kij = 0 ; K|i−Kk
i||k = 0 ; −K̇ij+KKij−2KikK

k
j = Rij .(2)

‡ Greek indices run through 0, 1, 2, 3, while latin indices run through 1, 2, 3, and we set c = 8πG = 1.
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The second equation is the vacuum version of Raychaudhuri’s equation, the third set

of equations are the momentum constraints. Forming the trace of the last equation

and inserting it into Raychaudhuri’s equation, we obtain the vacuum version of the

Hamiltonian constraint: R + K2 − Ki
j Kj

i = 0, where R = Rk
k is the scalar curvature

with respect to the 3−metric, and K := Kk
k = −Θ can be interpreted as (minus) the

local expansion rate of the hypersurfaces. We further propose to spatially average the

scalar parts of the above equations, defined for any scalar function Ψ(t, X i) as

〈Ψ(t, X i)〉D :=
1

VD

∫

D
Ψ(t, X i)

√
det(gij)d

3X , (3)

where the volume of an arbitrary compact domain is VD(t) :=
∫
D

√
det(gij)d

3X.

Defining a volume scale factor by aD (t) := (VD(t)/VD(ti))
1/3, and averaging

Raychaudhuri’s equation and the Hamiltonian constraint using the non–commutativity

relation (true for any scalar S), 〈S 〉̇D − 〈Ṡ〉D = 〈Θ S〉D − 〈Θ〉D 〈S〉D, we obtain the

following well–known equations [9]:

äD

aD
=

QD

3
; H2

D = −kDi

a2
D

− 1

6
(WD + QD) , (4)

where HD denotes the (domain–dependent) Hubble rate HD = ȧD/aD = −1/3 〈K〉D,

and kDi
a (domain–dependent) constant of integration. The kinematical backreaction

QD is composed of extrinsic curvature invariants, while WD is an intrinsic curvature

invariant and describes the deviation from constant–curvature,

QD :=
〈
K2 − Ki

jK
j
i

〉
D − 2

3
〈K〉2D ; WD := 〈R〉D − 6kDi

a2
D

. (5)

For a homogeneous domain the above backreaction terms, being covariantly defined with

respect to a given spatial embedding, are zero. Therefore they encode the departure

from spatial homogeneity. The integrability condition connecting the two Eqs.(4), reads:

a−2
D (a2

DWD )̇ = −a−6
D (a6

DQD )̇ , (6)

expressing a combined conservation law for intrinsic curvature and extrinsic fluctuations.

3. Effective scalar field: the morphon

We rewrite the set of spatially averaged equations (4,6) and cast it into a Friedmannian

form with a purely geometrical effective energy–momentum tensor [10, 11]:

3
äD

aD
= −%D

eff + 3pDeff
2

; 3H2
D +

3kDi

a2
D

= %D
eff ; %̇D

eff + 3HD
(
%D

eff + pDeff
)

= 0 , (7)

where the effective densities are “morphed” by a (minimally coupled) scalar field, the

morphon ΦD, thoroughly discussed in [12] and here defined through:

%D
eff := −QD + WD

2
= ξ

1

2
Φ̇2

D + UD ; pDeff := −3QD −WD

6
= ξ

1

2
Φ̇2

D − UD , (8)
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where ξ = +/ − 1 for a standard/phantom scalar field, and UD = UD(ΦD) is the self–

interaction potential. From the above equations we obtain the following correspondence:

QD = UD − ξΦ̇2
D ; WD = −3UD . (9)

We appreciate that the deviation of the averaged scalar curvature from a constant–

curvature model WD is directly proportional to the potential energy; an expanding (or

contracting) classical vacuum with on average negative scalar curvature deviation (a

positive potential UD) can be attributed to a negative potential energy of a morphon

field. The homogeneous case, QD = 0, corresponds to a virial equilibrium of the scalar

field energies. Inserting (9) into the integrability condition (6) implies that ΦD, for

Φ̇D 6= 0, obeys the (scale–dependent) Klein–Gordon equation:

Φ̈D + 3HDΦ̇D + ξ
∂

∂ΦD
UD = 0 . (10)

Averaged universe models obeying the previous set of equations follow, thus,

Friedmannian kinematics with no fundamental sources, but with an effective scalar

field perfect fluid that reflects the shape of spatial hypersurfaces and their embedding

into spacetime. Given a choice of ξ and of the potential, the evolution of these models

is fixed (the governing equations are closed).

In order to model inflation we impose the constraints (UD > 0, ξ = +1) ⇒ (WD <

0, WD + 3QD < 0): the morphon is canonical and its potential competes with its

kinetic energy. These conditions still allow for any sign of the kinematical backreaction

term; rewriting the extrinsic curvature invariants in (5) in terms of the local expansion

and shear [7], we get that geometries dominated by their expansion fluctuations have

QD > 0 ⇔ UD > Φ̇2
D (hence äD > 0, see (4)), those dominated by their shear

fluctuations, QD < 0; and homogeneous spacetimes obey QD = 0 on all scales.

4. A morphonic inflaton

We offer the idea that the morphon can formally play the role of the inflaton, and that

(unavoidable) curvature inhomogeneities occurring at one point of the Universe’s history

could be the actual cause of a de Sitter–like era prior to the baryon nucleosynthesis

era, provided they are governed by an appropriate potential. In the average quantities

dictionary, inflation can be read off in terms of the effective first slow–roll parameter

äD > 0 ⇔ ε := −ḢD/H2
D < 1 . (11)

Some remarks are already necessary at this stage in order to assess our paradigm and to

distinguish it from the usual “FLRW+fundamental sources” inflationary picture. First,

since Eqs. (4) only functionally depend on a metric that needs not to be specified,

requiring äD > 0 does not imply that the comoving Hubble distance 1/aH decreases;

however, such is the essence of the fitting problem to find the best FLRW fitting model

to a lumpy universe [13, 14]. Secondly, a fair solution of the flatness and smoothness

problems would necessitate to implement averaging on the light cone, or would require
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an explicit inhomogeneous metric. Lacking the latter in the present context, we claim

that realizing ε < 1 during a sufficient number of e–folds is the best condition to address

the dynamics of inflation. Third, so as to legitimate the neglect of any averaged matter,

we refer to [25], where it is shown with the same class of assumptions (a flat enough

curvature invariant WD, see (12) below) that the corresponding cosmological parameter

ΩD
m = 〈ρ〉D /3H2

D dives under a percent within a few H−1
D (ti) times. Therefore a large

enough initial “Hubble parameter” HD(ti) consigns the matter content to oblivion.

A suitable potential UD has to be chosen in order to identify the morphon as a

trustworthy inflaton. This identification implies that the cause (the inhomogeneities)

and the consequence (the smoothness) of the present model are at odds. Therefore,

a meaningful potential needs not only to describe how inhomogeneities can induce

inflation, but also how they can disappear throughout this process. Translated to

the standard inflationary paradigm, this condition can be easily implemented by any

potential that possesses a minimum downwards which the inflaton rolls. One of the

simplest examples, which has been extensively studied in the context of chaotic inflation

[16], is a potential of the Ginzburg–Landau form:

UGL
D = U0

(
Φ2

D − Φ2
0

)2
/Φ4

0 . (12)

This quartic potential can also be related to a fundamental Higgs field. However, even

if such a scalar field is fundamental, there is the possibility that no Higgs particle is

involved – as in our case – e.g. [17]. Contrary to standard inflation one must here raise

the issue of the “reality” of such a potential, since we postulate that UD is actually

given by the averaged scalar curvature (9). More precisely, one should question the

assumption of a slow–roll period, which corresponds to a nearly constant value of the

averaged curvature. At this stage we cannot provide a proof for this possibility, e.g.

through a suitable exact solution or through a well–defined approximation for the local

evolution of curvature, but we can summarize plausible hints that the actual physical

properties of an intrinsic curvature distribution could comply with the expected: first,

there are indications from perturbation theory that the perturbative expansion is led by

a term WD ∝ a−1
D , when putting the Friedmannian zero–order curvature to zero (so that

the scenario is exclusively governed by backreaction, i.e. the curvature–deviation from

a flat model), and this perturbative expansion can be extended up to including even

a constant term [18]; secondly, a concrete modeling of the non–perturbative aspects of

the curvature distribution in a multiscale analysis reveals that, even if subdomains are

evolving according to the term WD ∝ a−1
D , the variance between subdomains can lead

to a de Sitter–like behavior on large scales [15]. These results, though not being a proof

of the actual choice we made (say, we employ (12) as an illustrative example), open the

possibility that there exist some configurations of the geometrical inhomogeneities that

enable a slowly varying curvature, that is a sufficiently flat potential. Obviously, we here

are in the same situation as for an explanation of the dark energy phenomenon through

inhomogeneities, an ongoing research field that is qualitatively well–understood as for

the mechanism but is not yet quantitatively conclusive.
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Shear + Curv.

Shear + max Curv.

Homog. + Curv.
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L type

FD
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GL

Figure 1. The Ginzburg–Landau potential in arbitrary units and the possible initial
conditions as well as their physical meaning. All conditions possess some curvature
WDi

< 0. The arrows schematically indicate the amplitude of the morphon’s initial
speed Φ̇Di

. In the order of the points (from left to right): the first two points dominated
by shear fluctuations (red, green) are obtained for QDi

< 0 ⇔ Φ̇2
Di

> 2(H2
Di

+kDi
); the

next points dominated by expansion fluctuations (blue, pink) for Φ̇2
Di

< 2(H2
Di

+ kDi
),

where the de Sitter–Λ equivalent case has a stiff morphon Φ̇Di
= 0; the homogeneous

case (last point, orange) is obtained for Φ̇2
Di

= 2(H2
Di

+ kDi
).

Once the minimum Φ0 is fixed, the evolution of the morphon, given the integrability

condition (6), is practically independent of the initial conditions§ [19]. In Fig. 1 we

show how all acceptable initial conditions are reinterpreted in terms of the curvature,

and expansion/shear fluctuations. For any of these types we find the behavior shown

in the inset of Fig. 2: instead of simple inflation ε < 1, the choice of UGL
D gives us

slow–roll inflation ε � 1 during which the energy density budget is dominated by

the curvature term ΩD
W = −WD/6H2

D ' 3/2, and a negative kinematical backreaction

density ΩD
Q = −QD/6H2

D ' −1/2, i.e. by expansion variance, whatever the initial

value of the homogeneous part of the curvature, ΩDi
k = −kDi

/a2
Di

H2
Di

= 1 − ΩDi
Q − ΩDi

W ,

is. At the end of the inflationary era, the morphon oscillates down its potential and,

because of the order of the polynomial (12), the effective scale factor behaves as if it

were dominated by dust matter, aD ∝ t2/3, and the effective deceleration parameter

qD = −äD(aDH2
D)−1 = 2ΩD

Q oscillates around qD ∼= 1/2. While ΩD
W oscillates around

3/4 and ΩD
Q around 1/4, WD and QD tend to vanish, i.e. our model generically tends

to be – on average – homogeneous and quasi–isotropic.

Let us sum up the evolution scenario driven by kinematical backreaction QD:

thanks to a favorable configuration of the latter and of the average curvature, a) a

period of accelerated expansion kicks out (QD rises more rapidly than H2
D), b) an

inflationary era follows during which the expansion variance stays positive and almost

constant (QD ' 3H2
D ' const.), c) the outcome is a globally inflated universe, hence

exponentially smooth, where gravity and shear pull back, causing on time–average a

§ U0 determines the inflation’s onset time and influences also its duration. Due to the necessity
to recover the CMB temperature fluctuations, “classical” inflationary models suffer from fine–tuning
issues, once perturbation theory is performed on the inflaton. Such is not the case here, since our model
tackles the bulk effect of inflation within a highly non–linear regime, without invoking perturbation
theory. Hence, though a lack, the absence of perturbative constraints allows us to get rid of fine–tuning.
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Figure 2. The energy densities ΩD
Q (solid, red), ΩD

W (dashed, blue), and ΩD
k

(dotdashed, green) for one of the cases of Fig. 1 as a function of the number of e–folds
N = ln aD. The initial value of the homogeneous part of the intrinsic curvature has
been taken arbitrary large (e.g. ΩDi

k ' 1) to underline the fact that it vanishes anyway
after a few e–folds. In the inset, the slow–roll parameter ε for the same configuration
is shown. Since ε = ΩD

k + Φ̇2
D/2 always holds, ε ' 1 in the pre–inflation era when

ΩD
k � ΩD

Q, ΩD
W , and ε ' 0 during inflation when UGL

D � Φ̇2
D/2.

negative kinematical backreaction Q̄D ' −2/3t2. Hence, while the inhomogeneities

wash out at the end of the process, so does the acceleration, hereby providing a natural

graceful exit, univocally based, should we stress, on mere gravitation.

5. Discussion

Looking at a portion of the classical vacuum within Einstein’s theory, we obtained,

by foliating spacetime and spatially averaging the scalar parts of the Einstein vacuum

equations, a Friedmann–like evolution of the scale factor, however, driven by an effective

scalar field. Starting with a sufficiently flat potential, the backreaction mechanism

initiates a metamorphosis of the geometrical properties of space that goes along with

an exponential inflationary phase. This dynamics tends to flatten the averaged scalar

curvature and suppresses fluctuations. Although the present scenario just prescribes the

initial conditions for a follow–up pre–heating, the same mechanism sets the conditions

to provoke an intrinsic exit scenario. Note also that, while acceleration was associated

to the formation of inhomogeneities in the Late Universe, e.g. [20], the application of

the same mechanism to the Early Universe tends to homogenize spatial hypersurfaces.

Let us list some of the immediate consequences of this mechanism. First, due to

its classical nature, the inflaton’s mass is no longer limited by the Planck/SUSY scale

(see e.g. [21]). Secondly, inflation is already possible for the unmodified Hilbert action,

which of course does not exclude the need for improvements of Einstein’s theory. Third,

inflation, often dubbed to be unsustainable in inhomogeneous spacetimes [22] (though

see e.g. [23]), could occur despite the natural chaotic (inhomogeneous) initial conditions

invoked by the theory [24] (the reason for this behavior is essentially that we do not

study the stability of the fluctuations on a homogeneous reference background but that

of a background–free general average).

Once this average correctly computed, one can address the issue of fluctuations
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which one expects to be the seeds of large–scale structure and of the CMB spectrum;

the absence of such a prediction is certainly a dearth that we should overcome (by

formulating of a fluctuation theory about the average). In a joined paper [25], we

improved the present model by proving that a foliation into flat space sections is unstable

and is attracted by an inhomogeneous negative–curvature state, and also by proving that

the “empty” model we considered is a generic attractor of “filled” models under some

conditions. In a forthcoming paper, we shall address a more general model that includes

matter, radiation and fundamental scalar field inhomogeneities. If sources are present,

there are interesting interactions with a morphon field, the latter being always present

in the case of an inhomogeneous cosmology.

The presented scenario points to a huge potential of studying scalar field models

in the Early Universe. We gave the simplest conceivable model that generates inflation

out of the classical inhomogeneous vacuum. Contrary to the quasi–Newtonian standard

picture, we render the bulk effect of curvature responsible for inflation. In other words,

more than being acquitted of preventing inflation, inhomogeneities, when treated non–

perturbatively, could be the actual cause of it.
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Quant. Grav. 10, L227 (1993).
[23] O. Iguchi and H. Ishihara: Phys. Rev. D 56, 3216 (1997); S.E. Perez Bergliaffa and K.E. Hibberd:

Int. J. Mod. Phys. D 8, 705 (1999).
[24] N. Turok: Class. Quant. Grav. 19, 3449 (2002).
[25] X. Roy, T. Buchert, S. Carloni and N. Obadia: arXiv:1103.1146 (2011).


	Contents of Inflation2_CQG.tex
	Go to page 1 of 8
	Go to page 2 of 8
	Go to page 3 of 8
	Go to page 4 of 8
	Go to page 5 of 8
	Go to page 6 of 8
	Go to page 7 of 8
	Go to page 8 of 8


