11,885 research outputs found

    The Architecture of MEG Simulation and Analysis Software

    Full text link
    MEG (Mu to Electron Gamma) is an experiment dedicated to search for the μ+→e+γ\mu^+ \rightarrow e^+\gamma decay that is strongly suppressed in the Standard Model but predicted in several Super Symmetric extensions of it at an accessible rate. MEG is a small-size experiment (≈50−60\approx 50-60 physicists at any time) with a life span of about 10 years. The limited human resource available, in particular in the core offline group, emphasized the importance of reusing software and exploiting existing expertise. Great care has been devoted to provide a simple system that hides implementation details to the average programmer. That allowed many members of the collaboration to contribute to the development of the software of the experiment with limited programming skill. The offline software is based on two frameworks: {\bf REM} in FORTRAN 77 used for the event generation and detector simulation package {\bf GEM}, based on GEANT 3, and {\bf ROME} in C++ used in the readout simulation {\bf Bartender} and in the reconstruction and analysis program {\bf Analyzer}. Event display in the simulation is based on GEANT 3 graphic libraries and in the reconstruction on ROOT graphic libraries. Data are stored in different formats in various stage of the processing. The frameworks include utilities for input/output, database handling and format conversion transparent to the user.Comment: Presented at the IEEE NSS Knoxville, 2010 Revised according to referee's remarks Accepted by European Physical Journal Plu

    Is the solar convection zone in strict thermal wind balance?

    Full text link
    Context: The solar rotation profile is conical rather than cylindrical as one could expect from classical rotating fluid dynamics (e.g. Taylor-Proudman theorem). Thermal coupling to the tachocline, baroclinic effects and latitudinal transport of heat have been advocated to explain this peculiar state of rotation. Aims: To test the validity of thermal wind balance in the solar convection zone using helioseismic inversions for both the angular velocity and fluctuations in entropy and temperature. Methods: Entropy and temperature fluctuations obtained from 3-D hydrodynamical numerical simulations of the solar convection zone are compared with solar profiles obtained from helioseismic inversions. Results: The temperature and entropy fluctuations in 3-D numerical simulations have smaller amplitude in the bulk of the solar convection zone than those found from seismic inversions. Seismic inversion find variations of temperature from about 1 K at the surface up to 100 K at the base of the convection zone while in 3-D simulations they are of order 10 K throughout the convection zone up to 0.96 R⊙R_{\odot}. In 3-D simulations, baroclinic effects are found to be important to tilt the isocontours of Ω\Omega away from a cylindrical profile in most of the convection zone helped by Reynolds and viscous stresses at some locations. By contrast the baroclinic effect inverted by helioseismology are much larger than what is required to yield the observed angular velocity profile. Conclusion: The solar convection does not appear to be in strict thermal wind balance, Reynolds stresses must play a dominant role in setting not only the equatorial acceleration but also the observed conical angular velocity profile.Comment: 8 pages, 6 figures (low resolution), Accepted by Astronomy and Astrophysics - Affiliation: (1) AIM, CEA/DSM-CNRS-Univ. Paris Diderot, IRFU/SAp, France & (2) LUTH, Observatoire de Paris, CNRS-Univ. Paris Diderot, France ; (3) Tata Institute of Fundamental Research, India; (4) Centre for Basic Sciences, University of Mumbai, Indi

    A simple model of quantum trajectories

    Get PDF
    Quantum trajectory theory, developed largely in the quantum optics community to describe open quantum systems subjected to continuous monitoring, has applications in many areas of quantum physics. In this paper I present a simple model, using two-level quantum systems (q-bits), to illustrate the essential physics of quantum trajectories and how different monitoring schemes correspond to different ``unravelings'' of a mixed state master equation. I also comment briefly on the relationship of the theory to the Consistent Histories formalism and to spontaneous collapse models.Comment: 42 pages RevTeX including four figures in encapsulated postscript. Submitted to special issue of American Journal of Physic

    Influence of the Tachocline on Solar Evolution

    Get PDF
    Recently helioseismic observations have revealed the presence of a shear layer at the base of the convective zone related to the transition from differential rotation in the convection zone to almost uniform rotation in the radiative interior, the tachocline. At present, this layer extends only over a few percent of the solar radius and no definitive explanations have been given for this thiness. Following Spiegel and Zahn (1992, Astron. Astrophys.), who invoke anisotropic turbulence to stop the spread of the tachocline deeper in the radiative zone as the Sun evolves, we give some justifications for their hypothesis by taking into account recent results on rotating shear instability (Richard and Zahn 1999, Astron. Astrophys.). We study the impact of the macroscopic motions present in this layer on the Sun's structure and evolution by introducing a macroscopic diffusivity DTD_T in updated solar models. We find that a time dependent treatment of the tachocline significantly improves the agreement between computed and observed surface chemical species, such as the 7^7Li and modify the internal structure of the Sun (Brun, Turck-Chi\`eze and Zahn, 1999, in Astrophys. J.).Comment: to appear in Annals of the New York Academy of Sciences, vol 898. Postscript file, 9 pages and 5 figures New Email Address for A. S. Brun: [email protected]

    Magnetic energy cascade in spherical geometry: I. The stellar convective dynamo case

    Full text link
    We present a method to characterize the spectral transfers of magnetic energy between scales in simulations of stellar convective dynamos. The full triadic transfer functions are computed thanks to analytical coupling relations of spherical harmonics based on the Clebsch-Gordan coefficients. The method is applied to mean field αΩ\alpha\Omega dynamo models as benchmark tests. From the physical standpoint, the decomposition of the dynamo field into primary and secondary dynamo families proves very instructive in the αΩ\alpha\Omega case. The same method is then applied to a fully turbulent dynamo in a solar convection zone, modeled with the 3D MHD ASH code. The initial growth of the magnetic energy spectrum is shown to be non-local. It mainly reproduces the kinetic energy spectrum of convection at intermediate scales. During the saturation phase, two kinds of direct magnetic energy cascades are observed in regions encompassing the smallest scales involved in the simulation. The first cascade is obtained through the shearing of magnetic field by the large scale differential rotation that effectively cascades magnetic energy. The second is a generalized cascade that involves a range of local magnetic and velocity scales. Non-local transfers appear to be significant, such that the net transfers cannot be reduced to the dynamics of a small set of modes. The saturation of the large scale axisymmetric dipole and quadrupole are detailed. In particular, the dipole is saturated by a non-local interaction involving the most energetic scale of the magnetic energy spectrum, which points out the importance of the magnetic Prandtl number for large-scale dynamos.Comment: 21 pages, 14 figures, 1 table, accepted for publication in the Astrophysical Journa
    • …
    corecore