1,571 research outputs found

    Space and time in the parietal cortex: fMRI Evidence for a meural asymmetry

    Get PDF
    How are space and time related in the brain? This study contrasts two proposals that make different predictions about the interaction between spatial and temporal magnitudes. Whereas ATOM implies that space and time are symmetrically related, Metaphor Theory claims they are asymmetrically related. Here we investigated whether space and time activate the same neural structures in the inferior parietal cortex (IPC) and whether the activation is symmetric or asymmetric across domains. We measured participants’ neural activity while they made temporal and spatial judgments on the same visual stimuli. The behavioral results replicated earlier observations of a space-time asymmetry: Temporal judgments were more strongly influenced by irrelevant spatial information than vice versa. The BOLD fMRI data indicated that space and time activated overlapping clusters in the IPC and that, consistent with Metaphor Theory, this activation was asymmetric: The shared region of IPC was activated more strongly during temporal judgments than during spatial judgments. We consider three possible interpretations of this neural asymmetry, based on 3 possible functions of IPC

    Powder bed monitoring via digital image analysis in additive manufacturing

    Get PDF
    Due to the nature of Selective Laser Melting process, the built parts suffer from high chances of defects formation. Powders quality have a significant impact on the final attributes of SLM-manufactured items. From a processing standpoint, it is critical to ensure proper powder distribution and compaction in each layer of the powder bed, which is impacted by particle size distribution, packing density, flowability, and sphericity of the powder particles. Layer-by-layer study of the process can provide better understanding of the effect of powder bed on the final part quality. Image-based processing technique could be used to examine the quality of parts fabricated by Selective Laser Melting through layerwise monitoring and to evaluate the results achieved by other techniques. In this paper, a not supervised methodology based on Digital Image Processing through the build-inmachine camera is proposed. Since the limitation of the optical system in terms of resolution, positioning, lighting, field-of-view, many efforts were paid to the calibration and to the data processing. Its capability to individuate possible defects on SLM parts was evaluated by a Computer Tomography results verification

    Selective laser melting process of Al–based pyramidal horns for the w-band: fabrication and testing

    Get PDF
    In the context of exploring the possibility of using Al-powder Selective Laser Meltingto fabricate horn antennas for astronomical applications at millimeter wavelengths,we describe the design, the fabrication, the mechanical characterization, and theelectromagnetic performance of additive manufactured horn antennas for the W-band. Our aim, in particular, is to evaluate the performance impact of two basickinds of surface post-processing (manual grinding and sand-blasting) to deal withthe well-known issue of high surface roughness in 3D printed devices. We performedcomparative tests of co-polar and cross-polar angular response across the whole W-band, assuming a commercially available rectangular horn antenna as a reference.Based on gain and directivity measurements of the manufactured samples, we finddecibel-level detectable deviations from the behavior of the reference horn antenna,and marginal evidence of performance degradation at the top edge of the W-band.We conclude that both kinds of post-processing allow achieving good performancefor the W-band, but the higher reliability and uniformity of the sand-blasting post-process encourage exploring similar techniques for further development of aluminumdevices at these frequencies

    The genetics of feto-placental development: A study of acid phosphatase locus 1 and adenosine deaminase polymorphisms in a consecutive series of newborn infants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acid phosphatase locus 1 and adenosine deaminase locus 1 polymorphisms show cooperative effects on glucose metabolism and immunological functions. The recent observation of cooperation between the two systems on susceptibility to repeated spontaneous miscarriage prompted us to search for possible interactional effects between these genes and the correlation between birth weight and placental weight. Deviation from a balanced development of the feto-placental unit has been found to be associated with perinatal morbidity and mortality and with cardiovascular diseases in adulthood.</p> <p>Methods</p> <p>We examined 400 consecutive newborns from the Caucasian population of Rome. Birth weight, placental weight, and gestational length were registered. Acid phosphatase locus 1 and adenosine deaminase locus 1 phenotypes were determined by starch gel electrophoresis and correlation analysis was performed by SPSS programs. Informed verbal consent to participate in the study was obtained from the mothers.</p> <p>Results</p> <p>Highly significant differences in birth weight-placental weight correlations were observed among acid phosphatase locus 1 phenotypes (p = 0.005). The correlation between birth weight and placental weight was markedly elevated in subjects carrying acid phosphatase locus 1 phenotypes with medium-low F isoform concentration (A, CA and CB phenotypes) compared to those carrying acid phosphatase locus 1 phenotypes with medium-high F isoform concentration (BA and B phenotypes) (p = 0.002). Environmental and developmental variables were found to exert a significant effect on birth weight-placental weight correlation in subjects with medium-high F isoform concentrations, but only a marginal effect was observed in those with medium-low F isoform concentrations. The correlation between birth weight and placental weight is higher among carriers of the adenosine deaminase locus 1 allele*2, which is associated with low activity, than in homozygous adenosine deaminase locus 1 phenotype 1 carriers (p = 0.04). The two systems show a cooperative effect on the correlation between birth weight and placental weight: the highest value is observed in newborns carrying adenosine deaminase locus 1 allele*2 and acid phosphatase locus 1 phenotypes with medium-low F isoform concentration (p = 0.005).</p> <p>Conclusion</p> <p>These data suggest that zygotes with low adenosine deaminase locus 1 activity and low F activity may experience the most favourable intrauterine conditions for a balanced development of the feto-placental unit.</p

    Lectures on Generalized Symmetries

    Full text link
    These are a set of lecture notes on generalized global symmetries in quantum field theory. The focus is on invertible symmetries with a few comments regarding non-invertible symmetries. The main topics covered are the basics of higher-form symmetries and their properties including 't Hooft anomalies, gauging and spontaneous symmetry breaking. We also introduce the useful notion of symmetry topological field theories (SymTFTs). Furthermore, an introduction to higher-group symmetries describing mixings of higher-form symmetries is provided. Some advanced topics covered include the encoding of higher-form symmetries in holography and geometric engineering constructions in string theory. Throughout the text, all concepts are consistently illustrated using gauge theories as examples.Comment: 138 pages, added reference
    • …
    corecore