54 research outputs found
Generalized Multiplicative Extended Kalman Filter for Aided Attitude and Heading Reference System
International audienceIn this paper, we propose a “Generalized Multiplicative Extended Kalman Filter” (GMEKF) to estimate the position and velocity vectors and the orientation of a flying rigid body, using measurements from lowcost Earth-fixed position and velocity, inertial and magnetic sensors. Thanks to well-chosen state and output errors, the gains and covariance equations converge to constant values on a much bigger set of trajectories than equilibrium points as it is the case for the standard Multiplicative Extended Kalman Filter (MEKF). We recover thus the fundamental properties of the Kalman filter in the linear case, especially the convergence and optimality properties, for a large set of trajectories, and it should result in a better convergence of the estimation. We illustrate the good performance and the nice properties of the GMEKF on simulation and on experimental comparisons with a commercial system
Non-linear Symmetry-preserving Observer on Lie Groups
In this paper we give a geometrical framework for the design of observers on
finite-dimensional Lie groups for systems which possess some specific
symmetries. The design and the error (between true and estimated state)
equation are explicit and intrinsic. We consider also a particular case:
left-invariant systems on Lie groups with right equivariant output. The theory
yields a class of observers such that error equation is autonomous. The
observers converge locally around any trajectory, and the global behavior is
independent from the trajectory, which reminds of the linear stationary case.Comment: 12 pages. Submitted. Preliminary version publicated in french in the
CIFA proceedings and IFAC0
Symmetry-preserving Observers
This paper presents three non-linear observers on three examples of
engineering interest: a chemical reactor, a non-holonomic car, and an inertial
navigation system. For each example, the design is based on physical
symmetries. This motivates the theoretical development of invariant observers,
i.e, symmetry-preserving observers. We consider an observer to consist in a
copy of the system equation and a correction term, and we give a constructive
method (based on the Cartan moving-frame method) to find all the
symmetry-preserving correction terms. They rely on an invariant frame (a
classical notion) and on an invariant output-error, a less standard notion
precisely defined here. For each example, the convergence analysis relies also
on symmetries consideration with a key use of invariant state-errors. For the
non-holonomic car and the inertial navigation system, the invariant
state-errors are shown to obey an autonomous differential equation independent
of the system trajectory. This allows us to prove convergence, with almost
global stability for the non-holonomic car and with semi-global stability for
the inertial navigation system. Simulations including noise and bias show the
practical interest of such invariant asymptotic observers for the inertial
navigation system.Comment: To be published in IEEE Automatic Contro
Positive contraction mappings for classical and quantum Schrodinger systems
The classical Schrodinger bridge seeks the most likely probability law for a
diffusion process, in path space, that matches marginals at two end points in
time; the likelihood is quantified by the relative entropy between the sought
law and a prior, and the law dictates a controlled path that abides by the
specified marginals. Schrodinger proved that the optimal steering of the
density between the two end points is effected by a multiplicative functional
transformation of the prior; this transformation represents an automorphism on
the space of probability measures and has since been studied by Fortet,
Beurling and others. A similar question can be raised for processes evolving in
a discrete time and space as well as for processes defined over non-commutative
probability spaces. The present paper builds on earlier work by Pavon and
Ticozzi and begins with the problem of steering a Markov chain between given
marginals. Our approach is based on the Hilbert metric and leads to an
alternative proof which, however, is constructive. More specifically, we show
that the solution to the Schrodinger bridge is provided by the fixed point of a
contractive map. We approach in a similar manner the steering of a quantum
system across a quantum channel. We are able to establish existence of quantum
transitions that are multiplicative functional transformations of a given Kraus
map, but only for the case of uniform marginals. As in the Markov chain case,
and for uniform density matrices, the solution of the quantum bridge can be
constructed from the fixed point of a certain contractive map. For arbitrary
marginal densities, extensive numerical simulations indicate that iteration of
a similar map leads to fixed points from which we can construct a quantum
bridge. For this general case, however, a proof of convergence remains elusive.Comment: 27 page
Rank deficiency of Kalman error covariance matrices in linear time-varying system with deterministic evolution
We prove that for-linear, discrete, time-varying, deterministic system (perfect-model) with noisy outputs, the Riccati transformation in the Kalman filter asymptotically bounds the rank of the forecast and the analysis error covariance matrices to be less than or equal to the number of nonnegative Lyapunov exponents of the system. Further, the support of these error covariance matrices is shown to be confined to the space spanned by the unstable-neutral backward Lyapunov vectors, providing the theoretical justification for the methodology of the algorithms that perform assimilation only in the unstable-neutral subspace. The equivalent property of the autonomous system is investigated as a special case
A Fresh Variational-Analysis Look at the Positive Semidefinite Matrices World
International audienceEngineering sciences and applications of mathematics show unambiguously that positive semidefiniteness of matrices is the most important generalization of non-negative real num- bers. This notion of non-negativity for matrices has been well-studied in the literature; it has been the subject of review papers and entire chapters of books. This paper reviews some of the nice, useful properties of positive (semi)definite matrices, and insists in particular on (i) characterizations of positive (semi)definiteness and (ii) the geometrical properties of the set of positive semidefinite matrices. Some properties that turn out to be less well-known have here a special treatment. The use of these properties in optimization, as well as various references to applications, are spread all the way through. The "raison d'ĂŞtre" of this paper is essentially pedagogical; it adopts the viewpoint of variational analysis, shedding new light on the topic. Important, fruitful, and subtle, the positive semidefinite world is a good place to start with this domain of applied mathematics
From subspace learning to distance learning: a geometrical optimization approach
In this paper, we adopt a differential-geometry viewpoint to tackle the problem of learning a distance online. As this prob- lem can be cast into the estimation of a fixed-rank positive semidefinite (PSD) matrix, we develop algorithms that ex- ploits the rich geometry structure of the set of fixed-rank PSD matrices. We propose a method which separately updates the subspace of the matrix and its projection onto that subspace. A proper weighting of the two iterations enables to continu- ously interpolate between the problem of learning a subspace and learning a distance when the subspace is fixed
Riemannian metric and geometric mean for positive semidefinite matrices of fixed rank
This paper introduces a new metric and mean on the set of positive semidefinite matrices of fixed-rank. The proposed metric is derived from a well-chosen Riemannian quotient geometry that generalizes the reductive geometry of the positive cone and the associated natural metric. The resulting Riemannian space has strong geometrical properties: it is geodesically complete, and the metric is invariant with respect to all transformations that preserve angles (orthogonal transformations, scalings, and pseudoinversion). A meaningful approximation of the associated Riemannian distance is proposed, that can be efficiently numerically computed via a simple algorithm based on SVD. The induced mean preserves the rank, possesses the most desirable characteristics of a geometric mean, and is easy to compute. © 2009 Society for Industrial and Applied Mathematics
- …