62 research outputs found

    Measurement of Turbulence in Superfluid 3He-B

    Full text link
    The experimental investigation of superfluid turbulence in 3He-B is generally not possible with the techniques which have been developed for 4He-II. We describe a new method by which a transient burst of turbulent vortex expansion can be generated in 3He-B. It is based on the injection of a few vortex loops into rotating vortex-free flow. The time-dependent evolution of the quantized vorticity is then monitored with NMR spectroscopy. Using these techniques the transition between regular (i.e. vortex number conserving) and turbulent vortex dynamics can be recorded at T ~ 0.6 Tc and a number of other characteristics of turbulence can be followed down to a temperature of T ~ 0.4 Tc.Comment: 31 pages, 10 figure

    Onset of turbulence in superfluid 3He-B and its dependence on vortex injection in applied flow

    Full text link
    Vortex dynamics in 3He-B is divided by the temperature dependent damping into a high-temperature regime, where the number of vortices is conserved, and a low-temperature regime, where rapid vortex multiplication takes place in a turbulent burst. We investigate experimentally the hydrodynamic transition between these two regimes by injecting seed vortex loops into vortex-free rotating flow. The onset temperature of turbulence is dominated by the roughly exponential temperature dependence of vortex friction, but its exact value is found to depend on the injection method.Comment: To be published in the proceedings of the 24th International Conference on Low Temperature Physics - LT24, in Conference Proceedings of the American Institute of Physic

    Phase diagram of turbulence in superfluid 3He-B

    Full text link
    In superfluid 3He-B mutual-friction damping of vortex-line motion decreases roughly exponentially with temperature. We record as a function of temperature and pressure the transition from regular vortex motion at high temperatures to turbulence at low temperatures. The measurements are performed with non-invasive NMR techniques, by injecting vortex loops into a long column in vortex-free rotation. The results display the phase diagram of turbulence at high flow velocities where the transition from regular to turbulent dynamics is velocity independent. At the three measured pressures 10.2, 29.0, and 34 bar, the transition is centered at 0.52--0.59Tc and has a narrow width of 0.06Tc while at zero pressure turbulence is not observed above 0.45Tc.Comment: To be published in J. Low Temp. Phys. (QFS2004 proceedings

    On production and asymmetric focusing of flat electron beams using rectangular capillary discharge plasmas

    Full text link
    A method for the asymmetric focusing of electron bunches, based on the active plasma lensing technique is proposed. This method takes advantage of the strong inhomogeneous magnetic field generated inside the capillary discharge plasma to focus the ultrarelativistic electrons. The plasma and magnetic field parameters inside the capillary discharge are described theoretically and modeled with dissipative magnetohydrodynamic computer simulations enabling analysis of the capillaries of rectangle cross-sections. Large aspect ratio rectangular capillaries might be used to transport electron beams with high emittance asymmetries, as well as assist in forming spatially flat electron bunches for final focusing before the interaction point.Comment: 16 pages, 7 figures, 1 tabl

    Laser beam coupling with capillary discharge plasma for laser wakefield acceleration applications

    Full text link
    One of the most robust methods, demonstrated up to date, of accelerating electron beams by laser-plasma sources is the utilization of plasma channels generated by the capillary discharges. These channels, i.e., plasma columns with a minimum density along the laser pulse propagation axis, may optically guide short laser pulses, thereby increasing the acceleration length, leading to a more efficient electron acceleration. Although the spatial structure of the installation is simple in principle, there may be some important effects caused by the open ends of the capillary, by the supplying channels etc., which require a detailed 3D modeling of the processes taking place in order to get a detailed understanding and improve the operation. However, the discharge plasma, being one of the most crucial components of the laser-plasma accelerator, is not simulated with the accuracy and resolution required to advance this promising technology. In the present work, such simulations are performed using the code MARPLE. First, the process of the capillary filling with a cold hydrogen before the discharge is fired, through the side supply channels is simulated. The main goal of this simulation is to get a spatial distribution of the filling gas in the region near the open ends of the capillary. A realistic geometry is used for this and the next stage simulations, including the insulators, the supplying channels as well as the electrodes. Second, the simulation of the capillary discharge is performed with the goal to obtain a time-dependent spatial distribution of the electron density near the open ends of the capillary as well as inside the capillary. Finally, to evaluate effectiveness of the beam coupling with the channeling plasma wave guide and electron acceleration, modeling of laser-plasma interaction was performed with the code INF&RNOComment: 11 pages, 9 figure

    Adsorption and two-body recombination of atomic hydrogen on 3^3He-4^4He mixture films

    Full text link
    We present the first systematic measurement of the binding energy EaE_a of hydrogen atoms to the surface of saturated 3^3He-4^4He mixture films. EaE_a is found to decrease almost linearly from 1.14(1) K down to 0.39(1) K, when the population of the ground surface state of 3^3He grows from zero to 6×10146\times10^{14} cm−2^{-2}, yielding the value 1.2(1)×10−151.2(1)\times 10^{-15} K cm2^2 for the mean-field parameter of H-3^3He interaction in 2D. The experiments were carried out with overall 3^3He concentrations ranging from 0.1 ppm to 5 % as well as with commercial and isotopically purified 4^4He at temperatures 70...400 mK. Measuring by ESR the rate constants KaaK_{aa} and KabK_{ab} for second-order recombination of hydrogen atoms in hyperfine states aa and bb we find the ratio Kab/KaaK_{ab}/K_{aa} to be independent of the 3^3He content and to grow with temperature.Comment: 4 pages, 4 figures, all zipped in a sigle file. Submitted to Phys. Rev. Let

    Non-adiabatic cluster expansion after ultrashort laser interaction

    Get PDF
    AbstractWe used X-ray spectroscopy as a diagnostic tool for investigating the properties of laser-cluster interactions at the stage in which non-adiabatic cluster expansion takes place and a quasi-homogeneous plasma is produced. The experiment was carried out with a 10 TW, 65 fs Ti:Sa laser focused on CO2 cluster jets. The effect of different laser-pulse contrast ratios and cluster concentrations was investigated. The X-ray emission associated to the Rydberg transitions allowed us to retrieve, through the density and temperature of the emitting plasma, the time after the beginning of the interaction at which the emission occurred. The comparison of this value with the estimated time for the "homogeneous" plasma formation shows that the degree of adiabaticity depends on both the cluster concentration and the pulse contrast. Interferometric measurements support the X-ray data concerning the plasma electron density
    • …
    corecore