84 research outputs found

    Use of surface plasmon resonance for the measurement of low affinity binding interactions between HSP72 and measles virus nucleocapsid protein

    Get PDF
    The 72 kDa heat shock protein (HSP72) is a molecular chaperone that binds native protein with low affinity. These interactions can alter function of the substrate, a property known as HSP-mediated activity control. In the present work, BIAcore instrumentation was used to monitor binding reactions between HSP72 and naturally occurring sequence variants of the measles virus (MV) nucleocapsid protein (N), a structural protein regulating transcription/replication of the viral genome. Binding reactions employed synthetic peptides mimicking a putative HSP72 binding motif of N. Sequences were identified that bound HSP72 with affinities comparable to well-characterized activity control reactions. These sequences, but not those binding with lesser affinity, supported HSP72 activity control of MV transcription/replication. BIAcore instrumentation thus provides an effective way to measure biologically relevant low affinity interactions with structural variants of viral proteins

    Therapeutic targeting of membrane-associated GRP78 in leukemia and lymphoma : preclinical efficacy in vitro and formal toxicity study of BMTP-78 in rodents and primates

    Get PDF
    Translation of drug candidates into clinical settings requires demonstration of preclinical efficacy and formal toxicology analysis for filling an Investigational New Drug (IND) application with the US Food and Drug Administration (FDA). Here, we investigate the membrane-associated glucose response protein 78 (GRP78) as a therapeutic target in leukemia and lymphoma. We evaluated the efficacy of the GRP78-targeted proapoptotic drug bone metastasis targeting peptidomimetic 78 (BMTP-78), a member of the D (KLAKLAK)2-containing class of agents. BMTP-78 was validated in cells from patients with acute myeloid leukemia and in a panel of human leukemia and lymphoma cell lines, where it induced dose-dependent cytotoxicity in all samples tested. Based on the in vitro efficacy of BMTP-78, we performed formal good laboratory practice toxicology studies in both rodents (mice and rats) and nonhuman primates (cynomolgus and rhesus monkeys). These analyses represent required steps towards an IND application of BMTP-78 for theranostic first-in-human clinical trials.Peer reviewe

    Maintenance of structure and function of mitochondrial Hsp70 chaperones requires the chaperone Hep1

    No full text
    Hsp70 chaperones mediate folding of proteins and prevent their misfolding and aggregation. We report here on a new kind of Hsp70 interacting protein in mitochondria, Hep1. Hep1 is a highly conserved protein present in virtually all eukaryotes. Deletion of HEP1 results in a severe growth defect. Cells lacking Hep1 are deficient in processes that need the function of mitochondrial Hsp70s, such as preprotein import and biogenesis of proteins containing FeS clusters. In the mitochondria of these cells, Hsp70s, Ssc1 and Ssq1 accumulate as insoluble aggregates. We show that it is the nucleotide-free form of mtHsp70 that has a high tendency to self-aggregate. This process is efficiently counteracted by Hep1. We conclude that Hep1 acts as a chaperone that is necessary and sufficient to prevent self-aggregation and to thereby maintain the function of the mitochondrial Hsp70 chaperones

    Toward development of a screen to identify randomly encoded, foldable sequences

    No full text
    The ability to identify sequences in a randomly encoded polypeptide library that are capable of acquiring unique and stably folded structures would be valuable in the examination of protein-folding issues. The quality control system of the yeast secretory pathway prevents the release of incompletely folded polypeptides. Earlier work has shown that this feature can be used in a screen to identify mutations that increase the stability of a protein. We sought to extend this strategy for use with random sequence libraries by combining a quality-control system-based screen with generic tag-based immunodetection that can be applied to any sequence. To test this method, we screened a library encoding random mutations in a bovine pancreatic trypsin inhibitor variant containing a small generic tag. Initial on-plate screening resulted in a large number of false positives: sequences that were secreted but not foldable. These false positives were excluded successfully in additional screening steps that used a liquid-culture secretion screen and a gel electrophoresis assay. Three positive clones were obtained that showed midpoint thermal denaturation temperatures 10–16°C higher than the original bovine pancreatic trypsin inhibitor variant. Thus, this multistep screening method may be useful for finding novel, foldable sequences
    • …
    corecore