6,676 research outputs found

    Testing and Implementation Progress on the Advanced Photon Source (APS) Linear Accelerator (Linac) High-Power S-band Switching System

    Get PDF
    An S-band linear accelerator is the source of particles and the front end of the Advanced Photon Source injector. In addition, it supports a low-energy undulator test line (LEUTL) and drives a free-electron laser (FEL). A waveguide-switching and distribution system is now under construction. The system configuration was revised to be consistent with the recent change to electron-only operation. There are now six modulator-klystron subsystems, two of which are being configured to act as hot spares for two S-band transmitters each, so that no single failure will prevent injector operation. The two subsystems are also used to support additional LEUTL capabilities and off-line testing. Design considerations for the waveguide-switching subsystem, topology selection, control and protection provisions, high-power test results, and current status are describedComment: Linac 2000 paper No. THE07 3 pages with 3 figure

    Lattice-switch Monte Carlo

    Full text link
    We present a Monte Carlo method for the direct evaluation of the difference between the free energies of two crystal structures. The method is built on a lattice-switch transformation that maps a configuration of one structure onto a candidate configuration of the other by `switching' one set of lattice vectors for the other, while keeping the displacements with respect to the lattice sites constant. The sampling of the displacement configurations is biased, multicanonically, to favor paths leading to `gateway' arrangements for which the Monte Carlo switch to the candidate configuration will be accepted. The configurations of both structures can then be efficiently sampled in a single process, and the difference between their free energies evaluated from their measured probabilities. We explore and exploit the method in the context of extensive studies of systems of hard spheres. We show that the efficiency of the method is controlled by the extent to which the switch conserves correlated microstructure. We also show how, microscopically, the procedure works: the system finds gateway arrangements which fulfill the sampling bias intelligently. We establish, with high precision, the differences between the free energies of the two close packed structures (fcc and hcp) in both the constant density and the constant pressure ensembles.Comment: 34 pages, 9 figures, RevTeX. To appear in Phys. Rev.

    Evidence for the double degeneracy of the ground-state in the 3D ±J\pm J spin glass

    Full text link
    A bivariate version of the multicanonical Monte Carlo method and its application to the simulation of the three-dimensional ±J\pm J Ising spin glass are described. We found the autocorrelation time associated with this particular multicanonical method was approximately proportional to the system volume, which is a great improvement over previous methods applied to spin-glass simulations. The principal advantage of this version of the multicanonical method, however, was its ability to access information predictive of low-temperature behavior. At low temperatures we found results on the three-dimensional ±J\pm J Ising spin glass consistent with a double degeneracy of the ground-state: the order-parameter distribution function P(q)P(q) converged to two delta-function peaks and the Binder parameter approached unity as the system size was increased. With the same density of states used to compute these properties at low temperature, we found their behavior changing as the temperature is increased towards the spin glass transition temperature. Just below this temperature, the behavior is consistent with the standard mean-field picture that has an infinitely degenerate ground state. Using the concept of zero-energy droplets, we also discuss the structure of the ground-state degeneracy. The size distribution of the zero-energy droplets was found to produce the two delta-function peaks of P(q)P(q).Comment: 33 pages with 31 eps figures include

    Video and computer-based interactive exercises are safe and improve task-specific balance in geriatric and neurological rehabilitation: A randomised trial

    Get PDF
    © 2015. Question: Does adding video/computer-based interactive exercises to inpatient geriatric and neurological rehabilitation improve mobility outcomes? Is it feasible and safe? Design: Randomised trial. Participants: Fifty-eight rehabilitation inpatients. Intervention: Physiotherapist-prescribed, tailored, video/computer-based interactive exercises for 1 hour on weekdays, mainly involving stepping and weight-shifting exercises. Outcome measures: The primary outcome was the Short Physical Performance Battery (0 to 3) at 2 weeks. Secondary outcomes were: Maximal Balance Range (mm); Step Test (step count); Rivermead Mobility Index (0 to 15); activity levels; Activity Measure for Post Acute Care Basic Mobility (18 to 72) and Daily Activity (15 to 60); Falls Efficacy Scale (10 to 40), ED5D utility score (0 to 1); Reintegration to Normal Living Index (0 to 100); System Usability Scale (0 to 100) and Physical Activity Enjoyment Scale (0 to 126). Safety was determined from adverse events during intervention. Results: At 2 weeks the between-group difference in the primary outcome (0.1, 95% CI -0.2 to 0.3) was not statistically significant. The intervention group performed significantly better than usual care for Maximal Balance Range (38. mm difference after baseline adjustment, 95% CI 6 to 69). Other secondary outcomes were not statistically significant. Fifty-eight (55%) of the eligible patients agreed to participate, 25/29 (86%) completed the intervention and 10 (39%) attended > 70% of sessions, with a mean of 5.6 sessions (SD 3.3) attended and overall average duration of 4.5. hours (SD 3.1). Average scores were 62 (SD 21) for the System Usability Scale and 62 (SD 8) for the Physical Activity Enjoyment Scale. There were no adverse events. Conclusion: The addition of video/computer-based interactive exercises to usual rehabilitation is a safe and feasible way to increase exercise dose, but is not suitable for all. Adding the exercises to usual rehabilitation resulted in task-specific improvements in balance but not overall mobility. Registration: ACTRN12613000610730

    Loop structure of the lowest Bloch band for a Bose-Einstein condensate

    Full text link
    We investigate analytically and numerically Bloch waves for a Bose--Einstein condensate in a sinusoidal external potential. At low densities the dependence of the energy on the quasimomentum is similar to that for a single particle, but at densities greater than a critical one the lowest band becomes triple-valued near the boundary of the first Brillouin zone and develops the structure characteristic of the swallow-tail catastrophe. We comment on the experimental consequences of this behavior.Comment: 4 pages, 7 figure

    Freezing by Monte Carlo Phase-Switch

    Full text link
    We describe a Monte Carlo procedure which allows sampling of the disjoint configuration spaces associated with crystalline and fluid phases, within a single simulation. The method utilises biased sampling techniques to enhance the probabilities of gateway states (in each phase) which are such that a global switch (to the other phase) can be implemented. Equilibrium freezing-point parameters can be determined directly; statistical uncertainties prescribed transparently; and finite-size effects quantified systematically. The method is potentially quite general; we apply it to the freezing of hard spheres.Comment: 5 pages, 2 figure

    Conformational Mechanics of Polymer Adsorption Transitions at Attractive Substrates

    Full text link
    Conformational phases of a semiflexible off-lattice homopolymer model near an attractive substrate are investigated by means of multicanonical computer simulations. In our polymer-substrate model, nonbonded pairs of monomers as well as monomers and the substrate interact via attractive van der Waals forces. To characterize conformational phases of this hybrid system, we analyze thermal fluctuations of energetic and structural quantities, as well as adequate docking parameters. Introducing a solvent parameter related to the strength of the surface attraction, we construct and discuss the solubility-temperature phase diagram. Apart from the main phases of adsorbed and desorbed conformations, we identify several other phase transitions such as the freezing transition between energy-dominated crystalline low-temperature structures and globular entropy-dominated conformations.Comment: 13 pages, 15 figure

    Transition Matrix Monte Carlo Reweighting and Dynamics

    Full text link
    We study an induced dynamics in the space of energy of single-spin-flip Monte Carlo algorithm. The method gives an efficient reweighting technique. This dynamics is shown to have relaxation times proportional to the specific heat. Thus, it is plausible for a logarithmic factor in the correlation time of the standard 2D Ising local dynamics.Comment: RevTeX, 5 pages, 3 figure
    corecore