181 research outputs found

    Lipodystrophy HIV-related and FGF21: A new marker to follow the progression of lipodystrophy?

    Get PDF
    Recently new evidence about fibroblast growth factor 21 (FGF21) highlights the opportunities to use this molecule in new pharmaceutical formulations to combat type 2 diabetes and metabolic syndrome. It is well known that HIV is per se a condition of insulin resistance and in particular the patient with HIV-related lipodystrophy has a condition strictly related to metabolic syndrome. Lipodystrophy is associated with severe metabolic side effects, including dyslipidemia, hepatic insulin resistance, and lipid oxidation impairment. Research carried out showed that FGF21 levels were significantly increased in untreated HIV-1-infected patients and the increase was much marked in HIV-1-infected antiretroviral-treated patients that have developed lipodystrophy and in the patients with greatest metabolic alterations. FGF21 is expressed mainly by the liver, but also by other tissues such as the thymus, adipose tissue, and skeletal muscle. Therefore, many researchers have considered the investigation of possible variations of FGF21 in patients with significant alterations in body composition both in regard to fat mass and lean mass. In the light of the possible interactions between FGF21 and metabolic syndrome, it seems interesting to evaluate the implication of this hormone in patients with HIV-related lipodystrophy who have a severe metabolic picture of insulin resistance with important alterations in body composition

    Long-living optical gain induced by solvent viscosity in a push-pull molecule

    Get PDF
    The combination of continuum and ultrafast pump-probe spectroscopy with DFT and TDDFT calculations, in viscous and non-viscous environments, is effective in unraveling important features of the twisted intramolecular charge transfer mechanism in a new push-pull molecule that possesses aggregation induced emission properties. Long-living optical gain is found when this mechanism is inhibited, highlighting the importance of the environment rigidity in the design of materials for photonic applications

    L-Carnitine counteracts in vitro fructose-induced hepatic steatosis through targeting oxidative stress markers

    Get PDF
    Purpose: Nonalcoholic fatty liver disease (NAFLD) is defined by excessive lipid accumulation in the liver and involves an ample spectrum of liver diseases, ranging from simple uncomplicated steatosis to cirrhosis and hepatocellular carcinoma. Accumulating evidence demonstrates that high fructose intake enhances NAFLD development and progression promoting inhibition of mitochondrial \u3b2-oxidation of long-chain fatty acids and oxidative damages. l-Carnitine (LC), involved in \u3b2-oxidation, has been used to reduce obesity caused by high-fat diet, which is beneficial to ameliorating fatty liver diseases. Moreover, in the recent years, various studies have established LC anti-oxidative proprieties. The objective of this study was to elucidate primarily the underlying anti-oxidative mechanisms of LC in an in vitro model of fructose-induced liver steatosis. Methods: Human hepatoma HepG2 cells were maintained in medium supplemented with LC (5 mM LC) with or without 5 mM fructose (F) for 48 h and 72 h. In control cells, LC or F was not added to medium. Fat deposition, anti-oxidative, and mitochondrial homeostasis were investigated. Results: LC supplementation decreased the intracellular lipid deposition enhancing AMPK activation. However, compound C (AMPK inhibitor-10 \u3bcM), significantly abolished LC benefits in F condition. Moreover, LC, increasing PGC1 \u3b1 expression, ameliorates mitochondrial damage-F induced. Above all, LC reduced ROS production and simultaneously increased protein content of antioxidant factors, SOD2 and Nrf2. Conclusion: Our data seemed to show that LC attenuate fructose-mediated lipid accumulation through AMPK activation. Moreover, LC counteracts mitochondrial damages and reactive oxygen species production restoring antioxidant cellular machine. These findings provide new insights into LC role as an AMPK activator and anti-oxidative molecule in NAFLD

    Pioglitazone does not modify ANP levels of type 2 diabetic patients

    Get PDF
    Background: The atrial natriuretic peptide (ANP) regulates fluid volume redistribution between heart and the pulmonary vessels. In diabetic patients the physiological action of ANP appears to be seriously altered. Methods: 12 subjects (gender 6M/6F, age 47 \ub1 2 years, BMI 29.1 \ub1 0.1 kg/m2), with type 2 diabetes and under stable conditions, were studied after one month of pioglitazione treatment (30 mg/die) by means of isotonic blood volume expansion. Results: After one month of pioglitazone treatment the meta- bolic profile of the subjects improved (decrease dia- stolic blood pressure: p = 0.05, total cholesterol: p = 0.01, triglycerides: p = 0.03 and blood glucose: p = 0.01) as the expansion of their plasma volume was found associated with the decrease of hematocrit (p < 0.05). The statistical comparison before versus after pioglitazone showed a significant decrease in the ba- sal aldosterone levels post-treatment (p < 0.04). None-theless ANP plasma levels were similar before and after therapy. Conclusions: The inappropriately high concentrations of ANP induced by hyperglycemia and the abnormal responses to a physiological sti- mulus like an isotonic blood volume expansion are not reverted by one month of pioglitazone. This is in contrast with the brisk improvement of the meta-bolic profile seen for the same period of treatment. ANP secretion is modified by fluid load in diabetic patients. This anomaly is not reverted by pioglita-zone

    Immunosuppressive therapy in pancreas and islet transplant : Need for simultaneous assessment of insulin sensitivity and secretion

    Get PDF
    Diabetes mellitus is a metabolic disease possi- ble to treat via pancreas/islet transplantation but most immunosuppressive drugs are diabeto- genic. In this letter, we review current up to date methods to assess insulin action and secretion (using the surrogate indexes) suggesting their use in large studies in populations of pancreas/ islets transplanted patients

    Sex-differences in the longitudinal recovery of neuromuscular function in COVID-19 associated acute respiratory distress syndrome survivors

    Get PDF
    Introduction: Patients admitted to the intensive care unit (ICU) following severe acute respiratory syndrome 2 (SARS-CoV-2) infection may have muscle weakness up to 1 year or more following ICU discharge. However, females show greater muscle weakness than males, indicating greater neuromuscular impairment. The objective of this work was to assess sex differences in longitudinal physical functioning following ICU discharge for SARS-CoV-2 infection. Methods: We performed longitudinal assessment of physical functioning in two groups: 14 participants (7 males, 7 females) in the 3-to-6 month and 28 participants (14 males, 14 females) in the 6-to-12 month group following ICU discharge and assessed differences between the sexes. We examined self-reported fatigue, physical functioning, compound muscle action potential (CMAP) amplitude, maximal strength, and the neural drive to the tibialis anterior muscle. Results: We found no sex differences in the assessed parameters in the 3-to-6-month follow-up, indicating significant weakness in both sexes. Sex differences emerged in the 6-to-12-month follow-up. Specifically, females exhibited greater impairments in physical functioning, including lower strength, walking lower distances, and high neural input even 1 year following ICU-discharge. Discussion: Females infected by SARS-CoV-2 display significant impairments in functional recovery up to 1 year following ICU discharge. The effects of sex should be considered in post-COVID neurorehabilitation

    Potential therapeutic role of L-carnitine in skeletal muscle oxidative stress and atrophy conditions

    Get PDF
    The targeting of nutraceutical treatment to skeletal muscle damage is an emerging area of research, driven by the need for new therapies for a range of muscle-associated diseases. L-Carnitine (CARN) is an essential nutrient and plays a key role in mitochondrial \u3b2-oxidation and in the ubiquitin-proteasome system regulation. As a dietary supplement to improve athletic performance, CARN has been studied for its potential to enhance \u3b2-oxidation. However, CARN effects on myogenesis, mitochondrial activity, and hypertrophy process are not completely elucidated. This in vitro study aims to investigate CARN role on skeletal muscle remodeling, differentiation process, and myotubes formation. We analyzed muscle differentiation and morphological features in C2C12 myoblasts exposed to 5 mM CARN. Our results showed that CARN was able to accelerate C2C12 myotubes formation and induce morphological changes, characterizing the start of hypertrophy process. In addition, CARN improved AKT activation and downstream cellular signaling pathways involved in skeletal muscle atrophy process prevention. Also, CARN positively regulated the pathways involved in oxidative stress defense. In this work, we provide an interesting novel mechanism of the potential therapeutic use of CARN to treat pathological conditions characterized by skeletal muscle morphological and functional impairment, oxidative stress production, and atrophy process in aging

    Autoimmune polyendocrine syndrome 3 onset with severe ketoacidosis in a 74-year-old woman

    Get PDF
    Type 1 diabetes mellitus (T1D), autoimmune thyroid disease, and autoimmune gastritis often occur together forming the so-called autoimmune polyendocrine syndrome type 3 (APS3). We here report a clinical case of a 74-year-old woman who presented for the first time with severe hyperglycemia and ketoacidosis diagnosed as T1D. Further clinical investigations revealed concomitant severe hypothyroidism with autoimmune thyroid disease and severe cobalamin deficiency due to chronic atrophic gastritis. The diagnosis of type 1 diabetes mellitus was confirmed by the detection of autoantibodies against glutamic acid decarboxylase 65, islet cell antibodies, and anti-insulin autoantibodies. Anti-thyroperoxidase, anti-thyroglobulin, and anti-gastric parietal cell antibodies were also clearly positive. The case emphasized that new onset diabetic ketoacidosis, hypothyroidism, and cobalamin deficiency may simultaneously occur, and one disease can mask the features of the other, thereby making diagnosis difficult. It is noteworthy that an APS3 acute episode occurred in an asymptomatic elder woman for any autoimmune diseases

    Different circulating ghrelin responses to isoglucidic snack food in healthy individuals

    Get PDF
    The last decade has seen much debate on ghrelin as a potential target for treating obesity. Despite a close connection between snack food intake and obesity, snacking is controversially reviewed as a good habit in a healthy nutritional regimen. The aim of the study was to evaluate whether a different nutrient composition influences postprandial ghrelin levels and glucose increments induced by 6 isoglucidic snack food. 20 healthy individuals (10 M/10 F; BMI 23.1\ub10.5; age 33\ub10.67 years, mean and SE) from H San Raffaele Scientific Institute and Milan University were enrolled. The subjects underwent OGTT (50 g) and 6 isoglucidic test-meal loads to assess the ghrelin circulating levels and the area under glycemic curves induced by 6 commercial snacks. 3 h after hazelnut chocolate intake, ghrelin was significantly lower than with wafer chocolate intake (p<0.002). As a response to all snacks, the glycemic curves were not different even though hazelnut chocolate showed the lowest glycemic curve. Moreover, snack fat content was found to be inversely correlated to 3-h plasma ghrelin levels (p<0.0001; R2=0.77) and positively associated with satiety scores (p<0.02; R2=0.28). Also energy load was inversely correlated to 3-h plasma ghrelin (p<0.0001; R 2=0.73). Our results indicate that snack food administered in equivalent glucidic loads elicits postprandial ghrelin suppression and satiety ratings in different ways. Further studies are needed to elucidate the role of ghrelin as hunger-hormone in the regulation of energy balance

    Plasma Citrulline : a New Marker of Gut Epithelium Alteration in Obese Patients?

    Get PDF
    Objectives: In the last decade gut microbial diversity was associated with the pathogenesis of obesity in humans. Plasma citrulline was a simple and accurate biomarker for the severity of intestinal failure and was associated with short bowel syndrome and alteration of gut permeability, being developed as an alternative to D-xylose tolerance test for the diagnosis of an abnormal small intestinal absorption of nutrients. This study was performed to ascertain whether obesity might be associated with dysregulation of epithelial gut function. Methods: Fifteen obese individuals (5 M/10 F; BMI 37.4 \ub1 6.1 Kg/m2; 42 \ub1 6 yrs) and 15 healthy gender- and age-matched controls (6 M/9 F BMI: 22.7 \ub1 2.1 Kg/m2; 39 \ub1 7 yrs) underwent D-xylose load (25 g) and plasma citrulline, plasma insulin, glucose and lipid profile testing. Results: Plasma citrulline was significantly lower in the obese group (p = 0.045) with respect to controls, whilst total cholesterol, LDL and tryglicerides concentration, insulin level and HOMA-IR were significantly higher in obese patients. In contrast, after D-xylose load no difference in serum xylose was found between the two groups (p = ns). Conclusions: Obese patients show a decreased citrulline concentration with respect to lean subjects. Since citrulline is a known marker of intestinal health, alterations in the gut epithelium are likely to be associated with the obesity syndrome. We propose to measure citrulline level in obese patients on a routine basis
    • …
    corecore