23 research outputs found

    Free probability of type B: analytic interpretation and applications

    Full text link
    In this paper we give an analytic interpretation of free convolution of type B, introduced by Biane, Goodman and Nica, and provide a new formula for its computation. This formula allows us to show that free additive convolution of type B is essentially a re-casting of conditionally free convolution. We put in evidence several aspects of this operation, the most significant being its apparition as an 'intertwiner' between derivation and free convolution of type A. We also show connections between several limit theorems in type A and type B free probability. Moreover, we show that the analytical picture fits very well with the idea of considering type B random variables as infinitesimal deformations to ordinary non-commutative random variables.Comment: 28 page

    Random matrix techniques in quantum information theory

    Get PDF
    The purpose of this review article is to present some of the latest developments using random techniques, and in particular, random matrix techniques in quantum information theory. Our review is a blend of a rather exhaustive review, combined with more detailed examples -- coming from research projects in which the authors were involved. We focus on two main topics, random quantum states and random quantum channels. We present results related to entropic quantities, entanglement of typical states, entanglement thresholds, the output set of quantum channels, and violations of the minimum output entropy of random channels

    Complete diagrammatics of the single ring theorem

    Full text link
    Using diagrammatic techniques, we provide explicit functional relations between the cumulant generating functions for the biunitarily invariant ensembles in the limit of large size of matrices. The formalism allows to map two distinct areas of free random variables: Hermitian positive definite operators and non-normal R-diagonal operators. We also rederive the Haagerup-Larsen theorem and show how its recent extension to the eigenvector correlation function appears naturally within this approach.Comment: 18 pages, 6 figures, version accepted for publicatio

    Spectrum of non-Hermitian heavy tailed random matrices

    Get PDF
    Let (X_{jk})_{j,k>=1} be i.i.d. complex random variables such that |X_{jk}| is in the domain of attraction of an alpha-stable law, with 0< alpha <2. Our main result is a heavy tailed counterpart of Girko's circular law. Namely, under some additional smoothness assumptions on the law of X_{jk}, we prove that there exists a deterministic sequence a_n ~ n^{1/alpha} and a probability measure mu_alpha on C depending only on alpha such that with probability one, the empirical distribution of the eigenvalues of the rescaled matrix a_n^{-1} (X_{jk})_{1<=j,k<=n} converges weakly to mu_alpha as n tends to infinity. Our approach combines Aldous & Steele's objective method with Girko's Hermitization using logarithmic potentials. The underlying limiting object is defined on a bipartized version of Aldous' Poisson Weighted Infinite Tree. Recursive relations on the tree provide some properties of mu_alpha. In contrast with the Hermitian case, we find that mu_alpha is not heavy tailed.Comment: Expanded version of a paper published in Communications in Mathematical Physics 307, 513-560 (2011

    Complex analysis methods in noncommutative probability

    No full text
    In this thesis we study convolutions that arise from noncommutative probability theory. We prove several regularity results for free convolutions, and for measures in partially defined one-parameter free convolution semigroups. We discuss connections between Boolean and free convolutions and, in the last chapter, we prove that any infinitely divisible probability measure with respect to monotonic additive or multiplicative convolution belongs to a one-parameter semigroup with respect to the corresponding convolution. Earlier versions of some of the results in this thesis have already been published, while some others have been submitted for publication. We have preserved almost entirely the specific format for PhD theses required by Indiana University. This adds several unnecessary pages to the document, but we wanted to preserve the specificity of the document as a PhD thesis at Indiana University

    Hinčin's Theorem for Multiplicative Free Convolution

    No full text
    corecore