127 research outputs found

    Direct Delivery of VP19 Double-Stranded RNA into Litopenaeus vannamei by Reverse Gavage Induces Protection against White Spot Syndrome Virus Disease

    Get PDF
    Double stranded RNA was synthesized in vitro and was delivered by reverse gavage (RG) compared to traditional intramuscular injection (IM) 3 days prior to challenge with a lethal dose of WSSV in both groups

    Injection of Double Stranded RNA Enhances Survival of Litopenaeus vannamei Challenged with White Spot Syndrome Virus

    Get PDF
    Double stranded RNA was synthesized in vitro with sequences corresponding to portions of the WSSV genome and were injected into shrimp 3 days prior to challenge with a lethal dose of WSSV

    In Vivo Titration and Development of a Challenge Model for White Spot Syndrome Virus (WSSV) in Pacific White Shrimp (Litopeneus vannamei)

    Get PDF
    A challenge model was developed using a controlled bioassay system for estimation of lethal infective doses (LD 50) of White Spot Syndrome Virus (WSSV), as a model system to be used in further WSSV studies

    Biodistribution of degradable polyanhydride particles in Aedes aegypti tissues

    Get PDF
    Insecticide resistance poses a significant threat to the control of arthropods that transmit disease agents. Nanoparticle carriers offer exciting opportunities to expand the armamentarium of insecticides available for public health and other pests. Most chemical insecticides are delivered by contact or feeding, and from there must penetrate various biological membranes to reach target organs and kill the pest organism. Nanoparticles have been shown to improve bioactive compound navigation of such barriers in vertebrates, but have not been well-explored in arthropods. In this study, we explored the potential of polyanhydride micro- and nanoparticles (250 nm– 3 μm), labeled with rhodamine B to associate with and/or transit across insect biological barriers, including the cuticle, epithelium, midgut and ovaries, in female Ae. aeygpti mosquitoes. Mosquitoes were exposed using conditions to mimic surface contact with a residual spray or paint, topical exposure to mimic contact with aerosolized insecticide, or per os in a sugar meal. In surface contact experiments, microparticles were sometimes observed in association with the exterior of the insect cuticle. Nanoparticles were more uniformly distributed across exterior tissues and present at higher concentrations. Furthermore, by surface contact, topical exposure, or per os, particles were detected in internal organs. In every experiment, amphiphilic polyanhydride nanoparticles associated with internal tissues to a higher degree than hydrophobic nanoparticles. In vitro, nanoparticles associated with Aedes aegypti Aag2 cells within two hours of exposure, and particles were evident in the cytoplasm. Further studies demonstrated that particle uptake is dependent on caveolae-mediated endocytosis. The propensity of these nanoparticles to cross biological barriers including the cuticle, to localize in target tissue sites of interest, and to reach the cytoplasm of cells, provides great promise for targeted delivery of insecticidal candidates that cannot otherwise reach these cellular and subcellular locations

    Characterization of an endogenous gene expressed in Aedes aegypti using an orally infectious recombinant Sindbis virus

    Get PDF
    Sindbis virus expression vectors have been used successfully to express and silence genes of interest in vivo in several mosquito species, including Aedes aegypti, Ae. albopictus, Ae. triseriatus,Culex pipiens, Armigeres subalbatus and Anopheles gambiae. Here we describe the expression of an endogenous gene, defensin, in Ae. aegypti using the orally infectious Sindbis virus, MRE/3′2J expression vector. We optimized conditions to infect mosquito larvae per os using C6/36 Ae. albopictus cells infected with the recombinant virus to maximize virus infection and expression of defensin. Infection with the parental Sindbis virus (MRE/3′2J) did not induce defensin expression. Mosquito larvae infected by ingestion of recombinant Sindbis virus-infected C6/36 cells expressed defensin when they emerged as adults. Defensin expression was observed by western analysis or indirect fluorescent assay in all developmental stages of mosquitoes infected with MRE/3′2J virus that contained the defensin insert. The multiplicity of infection of C6/36 cells and the quantity of infected cells consumed by larvae played an important role in defensin expression. Parental viruses, missing the defensin insert, and/or other defective interfering virus may have contributed to these observations

    Characterization of Newly Revealed Sequences in the Infectious Myonecrosis Virus Genome in \u3ci\u3eLitopenaeus vannamei\u3c/i\u3e

    Get PDF
    Infectious myonecrosis virus (IMNV) causes significant economic losses in farmed shrimp, where associated mortality in ponds can reach 70%. To explore host/pathogen interactions, a next-generation sequencing approach using lymphoid organ tissue from IMNV-infected Litopenaeus vannamei shrimp was conducted. Preliminary sequence assembly of just the virus showed that there were at least an additional 639 bp at the 5′ terminus and 23 nt at the 3′ terminus as compared with the original description of the IMNV genome (7561 nt). Northern blot and reverse transcription-PCR analysis confirmed the presence of novel sequence at both ends of the genome. Using 5′ RACE, an additional 4 nt were discovered; 3′ RACE confirmed the presence of 22 bp rather than 23 bp of sequence. Based on these data, the IMNV genome is 8226 bp in length. dsRNA was used to trigger RNA interference (RNAi) and suppress expression of the newly revealed genome sections at the 5′ end of the IMNV genome in IMNV-infected L. vannamei. An RNAi trigger targeting a 376 bp length of the 5′ UTR did not improve survival of infected shrimp. In contrast, an RNAi trigger targeting a 381 bp sequence in ORF1 improved survival to 82.2% as compared with 2.2% survival in positive control animals. These studies revealed the importance of the new genome sections to produce high-titre infection, and associated disease and mortality, in infected shrimp

    Characterization of Newly Revealed Sequences in the Infectious Myonecrosis Virus Genome in \u3ci\u3eLitopenaeus vannamei\u3c/i\u3e

    Get PDF
    Infectious myonecrosis virus (IMNV) causes significant economic losses in farmed shrimp, where associated mortality in ponds can reach 70%. To explore host/pathogen interactions, a next-generation sequencing approach using lymphoid organ tissue from IMNV-infected Litopenaeus vannamei shrimp was conducted. Preliminary sequence assembly of just the virus showed that there were at least an additional 639 bp at the 5′ terminus and 23 nt at the 3′ terminus as compared with the original description of the IMNV genome (7561 nt). Northern blot and reverse transcription-PCR analysis confirmed the presence of novel sequence at both ends of the genome. Using 5′ RACE, an additional 4 nt were discovered; 3′ RACE confirmed the presence of 22 bp rather than 23 bp of sequence. Based on these data, the IMNV genome is 8226 bp in length. dsRNA was used to trigger RNA interference (RNAi) and suppress expression of the newly revealed genome sections at the 5′ end of the IMNV genome in IMNV-infected L. vannamei. An RNAi trigger targeting a 376 bp length of the 5′ UTR did not improve survival of infected shrimp. In contrast, an RNAi trigger targeting a 381 bp sequence in ORF1 improved survival to 82.2% as compared with 2.2% survival in positive control animals. These studies revealed the importance of the new genome sections to produce high-titre infection, and associated disease and mortality, in infected shrimp

    Sequence-optimized and targeted double-stranded RNA as a therapeutic antiviral treatment against infectious myonecrosis virus in \u3ci\u3eLitopenaeus vannamei\u3c/i\u3e

    Get PDF
    Infectious myonecrosis virus (IMNV) is a significant and emerging pathogen that has a tremendous impact on the culture of the Pacific white shrimp Litopenaeus vannamei. IMNV first emerged in Brazil in 2002 and subsequently spread to Indonesia, causing large economic losses in both countries. No existing therapeutic treatments or effective interventions currently exist for IMNV. RNA interference (RNAi) is an effective technique for preventing viral disease in shrimp. Here, we describe the efficacy of a double-stranded RNA (dsRNA) applied as an antiviral therapeutic following virus challenge. The antiviral molecule is an optimized dsRNA construct that targets an IMNV sequence at the 5’ end of the genome and that showed outstanding antiviral protection previously when administered prior to infection. At least 50% survival is observed with a low dose of dsRNA administered 48 h post-infection with a lethal dose of IMNV; this degree of protection was not observed when dsRNA was administered 72 h post-infection. Additionally, administration of the dsRNA antiviral resulted in a significant reduction of the viral load in the muscle of shrimp that died from disease or survived until termination of the present study, as assessed by quantitative RT-PCR. These data indicate that this optimized RNAi antiviral molecule holds promise for use as an antiviral therapeutic against IMNV

    Genomic Sequence and Phylogenetic Analysis of Culex Flavivirus, an Insect-Specific Flavivirus, Isolated From Culex pipiens (Diptera: Culicidae) in Iowa

    Get PDF
    Adult mosquitoes (Diptera: Culicidae) were collected in 2007 and tested for specific viruses, including West Nile virus, as part of the ongoing arbovirus surveillance efforts in the state of Iowa. A subset of these mosquitoes (6,061 individuals in 340 pools) was further tested by reverse transcription-polymerase chain reaction (RT-PCR) using flavivirus universal primers. Of the 211 pools of Culex pipiens (L.) tested, 50 were positive. One of 51 pools of Culex tarsalis Coquillet was also positive. The flavivirus minimum infection rates (expressed as the number of positive mosquito pools per 1,000 mosquitoes tested) for Cx. pipiens and Cx. tarsalis were 10.3 and 1.2, respectively. Flavivirus RNA was not detected in Aedes triseriatus (Say) (52 pools), Culex erraticus (Dyar & Knab) (25 pools), or Culex territans Walker (one pool). Sequence analysis of all RT-PCR products revealed that the mosquitoes had been infected with Culex flavivirus (CxFV), an insect-specific virus previously isolated in Japan, Indonesia, Texas, Mexico, Guatemala and Trinidad. The complete genome of one isolate was sequenced, as were the envelope protein genes of eight other isolates. Phylogenetic analysis revealed that CxFV isolates from the United States (Iowa and Texas) are more closely related to CxFV isolates from Asia than those from Mexico, Guatemala, and Trinidad

    Determination of the angle of attack on a research wind turbine rotor blade using surface pressure measurements

    Get PDF
    In this paper, a method to determine the angle of attack on a wind turbine rotor blade using a chordwise pressure distribution measurement was applied. The approach used a reduced number of pressure tap data located close to the blade leading edge. The results were compared with the measurements from three external probes mounted on the blade at different radial positions and with analytical calculations. Both experimental approaches used in this study are based on the 2-D flow assumption; the pressure tap method is an application of the thin airfoil theory, while the probe method applies geometrical and induction corrections to the measurement data. The experiments were conducted in the wind tunnel at the Hermann Föttinger Institut of the Technische Universität Berlin. The research turbine is a three-bladed upwind horizontal axis wind turbine model with a rotor diameter of 3 m. The measurements were carried out at rated conditions with a tip speed ratio of 4.35 and different yaw and pitch angles were tested in order to compare the approaches over a wide range of conditions. Results show that the pressure tap method is suitable and provides a similar angle of attack to the external probe measurements as well as the analytical calculations. This is a significant step for the experimental determination of the local angle of attack, as it eliminates the need for external probes, which affect the flow over the blade and require additional calibration
    • …
    corecore