108 research outputs found

    Mechanical oscillations of magnetic strips under the influence of external field

    Get PDF
    This is the final version of the article. Available from EDP Sciences via the DOI in this record.JEMS 2012 – Joint European Magnetic SymposiaBy application of a magnetic field on an amorphous metallic strip, the orientation of magnetization of Weiss domains can be changed. When the strip changes its length, this effect is called magnetostriction. We simulate this effect using a finite element method. In particular we calculate the change of the mechanical resonance frequency of a magnetic platelet as a function of the applied field. This gives a quantitative model of the influence of the applied magnetic field on the effective Young's Modulus of the material. © 2013 Owned by the authors, published by EDP Sciences

    Grain-size dependent demagnetizing factors in permanent magnets

    Get PDF
    This is the final version of the article. Available from the American Institute of Physics via the DOI in this record.The coercive field of permanent magnets decreases with increasing grain size. The grain size dependence of coercivity is explained by a size dependent demagnetizing factor. In Dy free Nd2_2Fe14_{14}B magnets the size dependent demagnetizing factor ranges from 0.2 for a grain size of 55 nm to 1.22 for a grain size of 8300 nm. The comparison of experimental data with micromagnetic simulations suggests that the grain size dependence of the coercive field in hard magnets is due to the non-uniform magnetostatic field in polyhedral grains.This work is based on results obtained from the future pioneering program “Development of magnetic material technology for high-efficiency motors” commissioned by the New Energy and Industrial Technology Development Organization (NEDO). We acknowledge the financial support from the Austrian Science Fund (F4112-N13)

    High energy product in Battenberg structured magnets

    Get PDF
    PublishedJournal Article© 2014 AIP Publishing LLC. Multiphase nano-structured permanent magnets show a high thermal stability of remanence and a high energy product while the amount of rare-earth elements is reduced. Non-zero temperature micromagnetic simulations show that a temperature coefficient of remanence of -0.073%/K and that an energy product greater than 400 kJ/m3 can be achieved at a temperature of 450 K in a magnet containing around 40 volume percent Fe65Co35 embedded in a hard magnetic matrix

    Influence of defect thickness on the angular dependence of coercivity in rare-earth permanent magnets

    Get PDF
    This is the final version of the article. Available from the American Institute of Physics via the DOI in this record.The coercive field and angular dependence of the coercive field of single-grain Nd2_{2}Fe14_{14}B permanent magnets are computed using finite element micromagnetics. It is shown that the thickness of surface defects plays a critical role in determining the reversal process. For small defect thicknesses reversal is heavily driven by nucleation, whereas with increasing defect thickness domain wall de-pinning becomes more important. This change results in an observable shift between two well-known behavioral models. A similar trend is observed in experimental measurements of bulk samples, where a Nd-Cu infiltration process has been used to enhance coercivity by modifying the grain boundaries. When account is taken of the imperfect grain alignment of real magnets, the single-grain computed results appears to closely match experimental behaviour.We acknowledge the financial support from the Technology Research Association of Magnetic Materials for High Efficient Motors (MagHEM)

    Fast stray field computation on tensor grids

    Full text link
    A direct integration algorithm is described to compute the magnetostatic field and energy for given magnetization distributions on not necessarily uniform tensor grids. We use an analytically-based tensor approximation approach for function-related tensors, which reduces calculations to multilinear algebra operations. The algorithm scales with N^(4/3) for N computational cells used and with N^(2/3) (sublinear) when magnetization is given in canonical tensor format. In the final section we confirm our theoretical results concerning computing times and accuracy by means of numerical examples.Comment: 16 pages, 1 figure, submitted to the Journal of Computational Physic

    Influence of defect thickness on the angular dependence of coercivity in rare-earth permanent magnets

    No full text
    International audienceThe coercive field and angular dependence of the coercive field of single-grain Nd2_{2}Fe14_{14}B permanent magnets are computed using finite element micromagnetics. It is shown that the thickness of surface defects plays a critical role in determining the reversal process. For small defect thicknesses reversal is heavily driven by nucleation, whereas with increasing defect thickness domain wall de-pinning becomes more important. This change results in an observable shift between two well-known behavioral models. A similar trend is observed in experimental measurements of bulk samples, where a Nd-Cu infiltration process has been used to enhance coercivity by modifying the grain boundaries. When account is taken of the imperfect grain alignment of real magnets, the single-grain computed results appears to closely match experimental behaviour
    • …
    corecore