666 research outputs found

    Centromeres under pressure: Evolutionary innovation in conflict with conserved function

    Get PDF
    Centromeres are essential genetic elements that enable spindle microtubule attachment for chromosome segregation during mitosis and meiosis. While this function is preserved across species, centromeres display an array of dynamic features, including: (1) rapidly evolving DNA; (2) wide evolutionary diversity in size, shape and organization; (3) evidence of mutational processes to generate homogenized repetitive arrays that characterize centromeres in several species; (4) tolerance to changes in position, as in the case of neocentromeres; and (5) intrinsic fragility derived by sequence composition and secondary DNA structures. Centromere drive underlies rapid centromere DNA evolution due to the “selfish” pursuit to bias meiotic transmission and promote the propagation of stronger centromeres. Yet, the origins of other dynamic features of centromeres remain unclear. Here, we review our current understanding of centromere evolution and plasticity. We also detail the mutagenic processes proposed to shape the divergent genetic nature of centromeres. Changes to centromeres are not simply evolutionary relics, but ongoing shifts that on one side promote centromere flexibility, but on the other can undermine centromere integrity and function with potential pathological implications such as genome instability

    HeMPPCAT: Mixtures of Probabilistic Principal Component Analysers for Data with Heteroscedastic Noise

    Full text link
    Mixtures of probabilistic principal component analysis (MPPCA) is a well-known mixture model extension of principal component analysis (PCA). Similar to PCA, MPPCA assumes the data samples in each mixture contain homoscedastic noise. However, datasets with heterogeneous noise across samples are becoming increasingly common, as larger datasets are generated by collecting samples from several sources with varying noise profiles. The performance of MPPCA is suboptimal for data with heteroscedastic noise across samples. This paper proposes a heteroscedastic mixtures of probabilistic PCA technique (HeMPPCAT) that uses a generalized expectation-maximization (GEM) algorithm to jointly estimate the unknown underlying factors, means, and noise variances under a heteroscedastic noise setting. Simulation results illustrate the improved factor estimates and clustering accuracies of HeMPPCAT compared to MPPCA

    Mechanical Stimulation of Fibroblasts by Extracorporeal Shock Waves: Modulation of Cell Activation and Proliferation Through a Transient Proinflammatory Milieu

    Get PDF
    Extracorporeal shock waves (ESWTs) are \u201cmechanical\u201d waves, widely used in regenerative medicine, including soft tissue wound repair. Although already being used in the clinical practice, the mechanism of action underlying their biological activities is still not fully understood. In the present paper we tried to elucidate whether a proinflammatory effect may contribute to the regenerative potential of shock waves treatment. For this purpose, we exposed human foreskin fibroblasts (HFF1 cells) to an ESWT treatment (100 pulses using energy flux densities of 0.19 mJ/mm2 at 3 Hz), followed by cell analyses after 5 min, up to 48 h. We then evaluated cell proliferation, reactive oxygen species generation, ATP release, and cytokine production. Cells cultured in the presence of lipopolysaccharide (LPS), to induce inflammation, were used as a positive control, indicating that LPS-mediated induction of a proinflammatory pattern in HFF1 increased their proliferation. Here, we provide evidence that ESWTs affected fibroblast proliferation through the overexpression of selected cytokines involved in the establishment of a proinflammatory program, superimposable to what was observed in LPS-treated cells. The possibility that inflammatory circuits can be modulated by ESWT mechanotransduction may disclose novel hypothesis on their biological underpinning and expand the fields of their biomedical application

    Severe Respiratory and Skeletal Muscles Involvement in a Carrier of Dysferlinopathy With Chronic Obstructive Pulmonary Disease

    Get PDF
    The natural course of progressive neuromuscular diseases can be complicated by respiratory muscle involvement. In muscular dystrophies such as Duchenne muscular dystrophy and myotonic dystrophy, respiratory muscle involvement is common. In others such as Becker, limb-girdle, and facioscapulo-humeral dystrophies, respiratory muscle involvement is infrequent and generally occurs in the more severe cases. Recently, it was reported that a mutation in the dysferlin gene and/or dysferlin deficiency causes proximal and distal forms of muscular dystrophy, which are known by the term dysferlinopathy. We describe a case of severe weakness of both limb-girdle and respiratory muscles in a patient who was carrier of the dysferlin gene mutation and who also had COPD. We suggest that the systemic inflammatory response of COPD and the dysferlin deficit interact and are responsible for both the skeletal and respiratory muscle impairment

    Carba-D,L-allal- and -D,L-galactal-derived vinyl N-nosyl aziridines as useful tools for the synthesis of 4-deoxy-4-(N-nosylamino)-2,3-unsaturated-5a-carbasugars

    Get PDF
    The novel carba-D,L-allal- and carba-D,L-galactal-derived vinyl N-nosyl aziridines were prepared and the regio- and stereoselective behavior in opening reactions with O- and N-nucleophiles examined. The carbaglycosylating ability of the novel aziridines, as deduced by the amount of 1,4-addition products (1,4-regioselectivity) obtained in the acid-catalyzed methanolysis taken as a model reaction, is similar or superior to that observed with the corresponding carba-D,L-allal- and -D,L-galactal-derived vinyl epoxides, respectively. In all 1,2- and 1,4-addition products obtained, a –(N-nosylamino) group is regio- and stereoselectively introduced at the C(4) carbon of a 1,2- or 2,3-unsaturated carbasugar, susceptible to further elaborations toward aminocyclitol derivatives. The stereoselective synthesis of the corresponding, enantiomerically pure carba-D,L-allal- and -D,L-galactal-derived vinyl N-acetyl aziridines is also described

    Isolating stem cells from skin: designing a novel highly efficient non-enzymatic approach

    Get PDF
    Stem cells are undifferentiated elements capable to acquire a specific cellular phenotype under the influence of specific stimuli, thus being involved in tissue integrity and maintenance. In the skin tissue self-renewal and wound healing after injury is a complex process, especially in adulthood, due to the aging process and the continuous exposure to damaging agents. The importance of stem cells in regenerative medicine is well known and defining or improving their isolation methods is therefore a primary and crucial step. In the present paper we present a novel method to isolate stem cells from human skin, including the involvement of a novel medium for the maintenance and expansion of in vitro cultures. The biopsies were mechanically digested and put in culture. The migrating cells were positive selected with magnetic cell sorting, characterized by flow-cytometry analysis, and viability detected by MTT assay. Cells exhibited a mesenchymal phenotype, as demonstrated by the positive acquirement of an osteogenic or adipogenic phenotype when cultured in specific conditioned media. Taken together our results disclose a novel method for culturing and expanding stem cells from skin and pave the way for future clinical applications in tissue regeneration

    Methylammonium-formamidinium reactivity in aged organometal halide perovskite inks

    Get PDF
    Over the past 10 years, organometal halide perovskites have revolutionized the field of optoelectronics, particularly of emerging photovoltaic technologies. Today's best perovskite solar cells use triple-cation compositions containing a mixture of formamidinium, methylammonium, and cesium to enable more reproducible and stable device performance. The common procedure uses as-prepared precursor ink to avoid an undesirable decrease in device performance, attributed recently to a chemical reaction between methylammonium and formamidinium in solution. Here we employ nuclear magnetic resonance spectroscopy to explore different experimental conditions that can significantly modify these reaction kinetics; in particular, we find that the presence of cesium as the third cation can substantially slow down methylammonium-formamidinium reactivity. Our findings allow us to draw up a protocol for extended overtime perovskite ink stabilization

    Epigenetics, stem cells, and autophagy: Exploring a path involving miRNA

    Get PDF
    MiRNAs, a small family of non-coding RNA, are now emerging as regulators of stem cell pluripotency, differentiation, and autophagy, thus controlling stem cell behavior. Stem cells are undifferentiated elements capable to acquire specific phenotype under different kind of stimuli, being a main tool for regenerative medicine. Within this context, we have previously shown that stem cells isolated from Wharton jelly multipotent stem cells (WJ-MSCs) exhibit gender differences in the expression of the stemness related gene OCT4 and the epigenetic modulator gene DNA-Methyltransferase (DNMT1). Here, we further analyze this gender difference, evaluating adipogenic and osteogenic differentiation potential, autophagic process, and expression of miR-145, miR-148a, and miR-185 in WJ-MSCs derived from males and females. These miRNAs were selected since they are involved in OCT4 and DNMT1 gene expression, and in stem cell differentiation. Our results indicate a difference in the regulatory circuit involving miR-148a/DNMT1/OCT4 autophagy in male WJ-MSCs as compared to female cells. Moreover, no difference was detected in the expression of the two-differentiation regulating miRNA (miR-145 and miR-185). Taken together, our results highlight a different behavior of WJ-MSCs from males and females, disclosing the chance to better understand cellular processes as autophagy and stemness, usable for future clinical applications
    • …
    corecore