66 research outputs found

    The Relationship Between Body Mass Index, Fitness, Socioeconomics, and Academic Accountability School Rating: A Texas Study

    Get PDF
    Between 1980 and 2000, obesity rates in the United States have doubled for adults and tripled for children (Centers for Disease Control [CDC], 2015). In addition, Texas, the second largest state, ranks 10th for the highest percentage of obesity among youth age 10-17 (CDC, 2015). Nationally, the United States falls behind other countries in high school and college completion rates (Greenstone, Harris, Li, Looney, & Patashnik, 2012), and since 2001 when the No Child Left Behind Act (NCLB) began, school administrators have reduced physical education, art, music, and recess by 44% to increase the time students spent in reading and math courses preparing for standardize tests (Kohl & Cook, 2013). While standardized testing helps measure student learning, it may be that it also contributes to the growing obesity epidemic among youth in America. This study examined the school-level relationship between body mass index (BMI), fitness, socioeconomics, and academic accountability school rating in Texas for 3 separate school years (2010-2011, 2012-2013, and 2013-2014). A significant relationship between BMI, fitness, and academic achievement was found. However, the relationship was inconsistent. This study adds to existing research and uses the most recent data to date

    The impact of stochastic modeling on the predictive power of galaxy formation simulations

    Full text link
    All modern galaxy formation models employ stochastic elements in their sub-grid prescriptions to discretise continuous equations across the time domain. In this paper, we investigate how the stochastic nature of these models, notably star formation, black hole accretion, and their associated feedback, that act on small (<< kpc) scales, can back-react on macroscopic galaxy properties (e.g. stellar mass and size) across long (>> Gyr) timescales. We find that the scatter in scaling relations predicted by the EAGLE model implemented in the SWIFT code can be significantly impacted by random variability between re-simulations of the same object, even when galaxies are resolved by tens of thousands of particles. We then illustrate how re-simulations of the same object can be used to better understand the underlying model, by showing how correlations between galaxy stellar mass and black hole mass disappear at the highest black hole masses (MBH>108M_{\rm BH} > 10^8 M_\odot), indicating that the feedback cycle may be interrupted by external processes. We find that although properties that are collected cumulatively over many objects are relatively robust against random variability (e.g. the median of a scaling relation), the properties of individual galaxies (such as galaxy stellar mass) can vary by up to 25\%, even far into the well-resolved regime, driven by bursty physics (black hole feedback) and mergers between galaxies. We suggest that studies of individual objects within cosmological simulations be treated with caution, and that any studies aiming to closely investigate such objects must account for random variability within their results.Comment: Accepted for publication in MNRA

    Is Enrichment Always Enriching and How Would You Know? Unintended Consequences and the Importance of Formal Assessment of Enrichment Programs in Bottlenose Dolphins (Tursiops truncatus)

    Get PDF
    Bottlenose dolphins (Tursiops truncatus) are viewed as a highly intelligent species capable of complex behaviors. This requires marine parks to maintain dynamic environmental enrichment programs in order to ensure dolphins’ optimal psychological and physiological well-being while in human care. In this study, two experiments were conducted to determine the effects of different forms of enrichment on the behavior of four bottlenose dolphins. In Experiment 1, multiple forms of novel enrichment resulted in a shift away from individual swim patterns – a change that is associated with increased behavioral diversity and so often considered an improvement in animal welfare – but also resulted in avoidance behavior and initially resulted in a decrease in affiliative behavior. In Experiment 2, introducing choice of enrichments resulted in unintended social consequences, such as agonistic behaviors. These two experiments together demonstrated that interpreting the results of enrichment programs may not be as straightforward as often presumed. The results suggest that unique forms of enrichment and variable schedules might be particularly effective but also that consistent evaluation continues to be necessary to minimize unintended behavioral consequences

    The retroviral oncoprotein Tax targets the coiled-coil centrosomal protein TAX1BP2 to induce centrosome overduplication

    Get PDF
    Emerging evidence suggests that supernumerary centrosomes drive genome instability and oncogenesis. Human T-cell leukaemia virus type I (HTLV-I) is etiologically associated with adult T-cell leukaemia (ATL). ATL cells are aneuploid, but the causes of aneuploidy are incompletely understood. Here, we show that centrosome amplification is frequent in HTLV-I-transformed cells and that this phenotype is caused by the viral Tax oncoprotein. We also show that the fraction of Tax protein that localizes to centrosomes interacts with TAX1BP2, a novel centrosomal protein composed almost entirely of coiled-coil domains. Overexpression of TAX1BP2 inhibited centrosome duplication, whereas depletion of TAX1BP2 by RNAi resulted in centrosome hyperamplification. Our findings suggest that the HTLV-I Tax oncoprotein targets TAX1BP2 causing genomic instability and aneuploidy. © 2006 Nature Publishing Group.postprin

    Phylogenetic Analysis of the Neks Reveals Early Diversification of Ciliary-Cell Cycle Kinases

    Get PDF
    NIMA-related kinases (Neks) have been studied in diverse eukaryotes, including the fungus Aspergillus and the ciliate Tetrahymena. In the former, a single Nek plays an essential role in cell cycle regulation; in the latter, which has more than 30 Neks in its genome, multiple Neks regulate ciliary length. Mammalian genomes encode an intermediate number of Neks, several of which are reported to play roles in cell cycle regulation and/or localize to centrosomes. Previously, we reported that organisms with cilia typically have more Neks than organisms without cilia, but were unable to establish the evolutionary history of the gene family

    The Drosophila homologue of Rootletin is required for mechanosensory function and ciliary rootlet formation in chordotonal sensory neurons

    Get PDF
    BACKGROUND: In vertebrates, rootletin is the major structural component of the ciliary rootlet and is also part of the tether linking the centrioles of the centrosome. Various functions have been ascribed to the rootlet, including maintenance of ciliary integrity through anchoring and facilitation of transport to the cilium or at the base of the cilium. In Drosophila, Rootletin function has not been explored. RESULTS: In the Drosophila embryo, Rootletin is expressed exclusively in cell lineages of type I sensory neurons, the only somatic cells bearing a cilium. Expression is strongest in mechanosensory chordotonal neurons. Knock-down of Rootletin results in loss of ciliary rootlet in these neurons and severe disruption of their sensory function. However, the sensory cilium appears largely normal in structure and in localisation of proteins suggesting no strong defect in ciliogenesis. No evidence was found for a defect in cell division. CONCLUSIONS: The role of Rootletin as a component of the ciliary rootlet is conserved in Drosophila. In contrast, lack of a general role in cell division is consistent with lack of centriole tethering during the centrosome cycle in Drosophila. Although our evidence is consistent with an anchoring role for the rootlet, severe loss of mechanosensory function of chordotonal (Ch) neurons upon Rootletin knock-down may suggest a direct role for the rootlet in the mechanotransduction mechanism itself

    GOGREEN: a critical assessment of environmental trends in cosmological hydrodynamical simulations at z ~ 1

    Get PDF
    Recent observations have shown that the environmental quenching of galaxies at z ∼ 1 is qualitatively different to that in the local Universe. However, the physical origin of these differences has not yet been elucidated. In addition, while low-redshift comparisons between observed environmental trends and the predictions of cosmological hydrodynamical simulations are now routine, there have been relatively few comparisons at higher redshifts to date. Here we confront three state-of-the-art suites of simulations (BAHAMAS+MACSIS, EAGLE+Hydrangea, IllustrisTNG) with state-of-the-art observations of the field and cluster environments from the COSMOS/UltraVISTA and GOGREEN surveys, respectively, at z ∼ 1 to assess the realism of the simulations and gain insight into the evolution of environmental quenching. We show that while the simulations generally reproduce the stellar content and the stellar mass functions of quiescent and star-forming galaxies in the field, all the simulations struggle to capture the observed quenching of satellites in the cluster environment, in that they are overly efficient at quenching low-mass satellites. Furthermore, two of the suites do not sufficiently quench the highest mass galaxies in clusters, perhaps a result of insufficient feedback from AGN. The origin of the discrepancy at low stellar masses (⁠M∗≲1010 M⊙), which is present in all the simulations in spite of large differences in resolution, feedback implementations, and hydrodynamical solvers, is unclear. The next generation of simulations, which will push to significantly higher resolution and also include explicit modelling of the cold interstellar medium, may help us to shed light on the low-mass tension

    ALMS1 and Alström syndrome: a recessive form of metabolic, neurosensory and cardiac deficits

    Get PDF
    corecore