20 research outputs found
Screening of the DNA mismatch repair genes MLH1, MSH2 and MSH6 in a Greek cohort of Lynch syndrome suspected families
<p>Abstract</p> <p>Background</p> <p>Germline mutations in the DNA mismatch repair genes predispose to Lynch syndrome, thus conferring a high relative risk of colorectal and endometrial cancer. The <it>MLH1, MSH2 </it>and <it>MSH6 </it>mutational spectrum reported so far involves minor alterations scattered throughout their coding regions as well as large genomic rearrangements. Therefore, a combination of complete sequencing and a specialized technique for the detection of genomic rearrangements should be conducted during a proper DNA-testing procedure. Our main goal was to successfully identify Lynch syndrome families and determine the spectrum of <it>MLH1</it>, <it>MSH2 </it>and <it>MSH6 </it>mutations in Greek Lynch families in order to develop an efficient screening protocol for the Greek colorectal cancer patients' cohort.</p> <p>Methods</p> <p>Forty-two samples from twenty-four families, out of which twenty two of Greek, one of Cypriot and one of Serbian origin, were screened for the presence of germline mutations in the major mismatch repair genes through direct sequencing and MLPA. Families were selected upon Amsterdam criteria or revised Bethesda guidelines.</p> <p>Results</p> <p>Ten deleterious alterations were detected in twelve out of the twenty-four families subjected to genetic testing, thus our detection rate is 50%. Four of the pathogenic point mutations, namely two nonsense, one missense and one splice site change, are novel, whereas the detected genomic deletion encompassing exon 6 of the <it>MLH1 </it>gene has been described repeatedly in the LOVD database. The average age of onset for the development of both colorectal and endometrial cancer among mutation positive families is 43.2 years.</p> <p>Conclusion</p> <p>The mutational spectrum of the MMR genes investigated as it has been shaped by our analysis is quite heterogeneous without any strong indication for the presence of a founder effect.</p
Partial loss of heterozygosity events at the mutated gene in tumors from MLH1/MSH2 large genomic rearrangement carriers
<p>Abstract</p> <p>Background</p> <p>Depending on the population studied, large genomic rearrangements (LGRs) of the mismatch repair (<it>MMR</it>) genes constitute various proportions of the germline mutations that predispose to hereditary non-polyposis colorectal cancer (HNPCC). It has been reported that loss of heterozygosity (LOH) at the LGR region occurs through a gene conversion mechanism in tumors from <it>MLH1</it>/<it>MSH2 </it>deletion carriers; however, the converted tracts were delineated only by extragenic microsatellite markers. We sought to determine the frequency of LGRs in Slovak HNPCC patients and to study LOH in tumors from LGR carriers at the LGR region, as well as at other heterozygous markers within the gene to more precisely define conversion tracts.</p> <p>Methods</p> <p>The main <it>MMR </it>genes responsible for HNPCC, <it>MLH1</it>, <it>MSH2</it>, <it>MSH6</it>, and <it>PMS2</it>, were analyzed by MLPA (multiplex ligation-dependent probe amplification) in a total of 37 unrelated HNPCC-suspected patients whose <it>MLH1/MSH2 </it>genes gave negative results in previous sequencing experiments. An LOH study was performed on six tumors from LGR carriers by combining MLPA to assess LOH at LGR regions and sequencing to examine LOH at 28 SNP markers from the <it>MLH1 </it>and <it>MSH2 </it>genes.</p> <p>Results</p> <p>We found six rearrangements in the <it>MSH2 </it>gene (five deletions and dup5-6), and one aberration in the <it>MLH1 </it>gene (del5-6). The <it>MSH2 </it>deletions were of three types (del1, del1-3, del1-7). We detected LOH at the LGR region in the single <it>MLH1 </it>case, which was determined in a previous study to be LOH-negative in the intragenic D3S1611 marker. Three tumors displayed LOH of at least one SNP marker, including two cases that were LOH-negative at the LGR region.</p> <p>Conclusion</p> <p>LGRs accounted for 25% of germline <it>MMR </it>mutations identified in 28 Slovakian HNPCC families. A high frequency of LGRs among the <it>MSH2 </it>mutations provides a rationale for a MLPA screening of the Slovakian HNPCC families prior scanning by DNA sequencing. LOH at part of the informative loci confined to the <it>MLH1 </it>or <it>MSH2 </it>gene (heterozygous LGR region, SNP, or microsatellite) is a novel finding and can be regarded as a partial LOH. The conversion begins within the gene, and the details of conversion tracts are discussed for each case.</p
The 5 ' Region of the MSH2 gene involved in hereditary non-polyposis colorectal cancer contains a high density of recombinogenic sequences
MSH2 rearrangements are involved in approximately 10% of hereditary non,polyposis colorectal cancer (HNPCC) families, and in most of the rearrangements, exon I is deleted. We scanned by quantitative multiplex polymerase chain reaction (PCR) of short fluorescent fragments (QMPSF) 200 kb of genomic sequences upstream of the MSH2 transcription initiation site in 21 HNPCC families with exon I deletions. This QMPSF scan revealed 12 distinct 5' breakpoints located up to 200 kb upstream of the MSH2 transcription initiation site. Sequencing analysis of the rearranged allele in 17 families revealed that most of the deletions (15/17) resulted from homologous Alu-mediated recombination. QMPSF and sequencing analysis in these 21 families led us to detect the presence of 20 distinct 5' breakpoints. In 14 out of 15 Alu-mediated recombinations, we found, either within the identical region in which the recombination had probably occurred or in its vicinity, the 26,bp Alu core sequence containing the recombinogenic Chi-like motif. Compared to the equivalent regions of other human genes, the MSH2 upstream region was found to contain a high density of Alu repeats (30% within 228 kb and 43% within 50 kb), most of which belong to the old Alu S subfamilies. In conclusion, this study demonstrates the heterogeneity of the breakpoints within the MSH2 upstream region and reveals the remarkable density of recombinogenic Alu sequences in this region
Molecular basis of the Li-Fraumeni syndrome: an update from the French LFS families
International audienceWe have performed an extensive analysis of TP53 in 474 French families suggestive of Li-Fraumeni syndrome (LFS), including 232 families fulfilling the Chompret criteria. We identified a germline alteration of TP53 in 82 families (17%), in 67/232 of the families fulfilling the Chompret criteria (29%) and in 15/242 which did not fulfil these criteria (6%). Most of the alterations corresponded to missense mutations (67%), and we identified in four families genomic deletions removing the entire TP53 locus, the promoter and the non-coding exon 1, or exons 2-10. These results represent a definitive argument demonstrating that LFS results from TP53 haplodeficiency. The mean ages of tumour onset were significantly different between patients harbouring TP53 missense mutations and other types of alterations, missense mutations being associated with a 9 year earlier tumour onset. These results confirm that missense mutations not only inactivate p53 but also have an additional oncogenic effect. Germline alterations of TP53 that lead exclusively to loss of function are therefore associated with a later age of tumour onset and the presence of such mutations should be considered in atypical LFS families with tumours diagnosed after 40 years
Haplotype analysis suggest that the MLH1 c.2059C > T mutation is a Swedish founder mutation
Abstract
Lynch syndrome (LS) predisposes to a spectrum of cancers and increases the lifetime risk of developing colorectal- or endometrial cancer to over 50%. Lynch syndrome is dominantly inherited and is caused by defects in DNA mismatch-repair genes MLH1, MSH2, MSH6 or PMS2, with the vast majority detected in MLH1 and MSH2. Recurrent LS-associated variants observed in apparently unrelated individuals, have either arisen de novo in different families due to mutation hotspots, or are inherited from a founder (a common ancestor) that lived several generations back. There are variants that recur in some populations while also acting as founders in other ethnic groups. Testing for founder mutations can facilitate molecular diagnosis of Lynch Syndrome more efficiently and more cost effective than screening for all possible mutations. Here we report a study of the missense mutation MLH1 c.2059C > T (p.Arg687Trp), a potential founder mutation identified in eight Swedish families and one Finnish family with Swedish ancestors. Haplotype analysis confirmed that the Finnish and Swedish families shared a haplotype of between 0.9 and 2.8 Mb. While MLH1 c.2059C > T exists worldwide, the Swedish haplotype was not found among mutation carriers from Germany or France, which indicates a common founder in the Swedish population. The geographic distribution of MLH1 c.2059C > T in Sweden suggests a single, ancient mutational event in the northern part of Sweden