10 research outputs found

    Maxillary sinus floor elevation using Beta-Tricalcium-Phosphate (beta-TCP) or natural bone: same inflammatory response

    Get PDF
    Sinus elevation is a common procedure to increase bone volume in the atrophic maxilla to allow placement of dental implants. Autogenous bone is the gold standard but is limited in quantity and causes morbidity at the donor site. β-TCP is a synthetic biomaterial commonly used in that purpose. It appears to induce a poor inflammatory response. This study aimed to evaluate the degree of edema of the sinus mucosa after sinus lift surgery according to the type of biomaterial. Forty sinuses (20 patients) were included retrospectively and divided into 2 groups according to the biomaterial that was used: synthetic biomaterial (BTCP group), natural bone (BONE group). A control group (CTRL group) was constituted by the non-grafted maxillary sinuses. Twelve measurements per sinus were realized on pre- and post-operative computed tomography and averaged to provide the sinus membrane thickness value (SM.Th). SM.Th was thicker post-operatively in the BTCP and BONE groups in comparison with the CTRL group and in comparison with pre-operative measurements. No difference was found post operatively between the BTCP and BONE groups. We found that a synthetic biomaterial (β-TCP) induced the same degree of edema, and thus of inflammation, as natural bone. It constitutes therefore an interesting alternative to autogenous bone for maxillary sinus lifts

    A systematic CRISPR screen defines mutational mechanisms underpinning signatures caused by replication errors and endogenous DNA damage

    Get PDF
    Mutational signatures are imprints of pathophysiological processes arising through tumorigenesis. We generated isogenic CRISPR-Cas9 knockouts (Δ) of 43 genes in human induced pluripotent stem cells, cultured them in the absence of added DNA damage, and performed whole-genome sequencing of 173 subclones. ΔOGG1, ΔUNG, ΔEXO1, ΔRNF168, ΔMLH1, ΔMSH2, ΔMSH6, ΔPMS1, and ΔPMS2 produced marked mutational signatures indicative of being critical mitigators of endogenous DNA modifications. Detailed analyses revealed mutational mechanistic insights, including how 8-oxo-dG elimination is sequence-context-specific while uracil clearance is sequence-context-independent. Mismatch repair (MMR) deficiency signatures are engendered by oxidative damage (C>A transversions), differential misincorporation by replicative polymerases (T>C and C>T transitions), and we propose a 'reverse template slippage' model for T>A transversions. ΔMLH1, ΔMSH6, and ΔMSH2 signatures were similar to each other but distinct from ΔPMS2. Finally, we developed a classifier, MMRDetect, where application to 7,695 WGS cancers showed enhanced detection of MMR-deficient tumors, with implications for responsiveness to immunotherapies

    A systematic CRISPR screen defines mutational mechanisms underpinning signatures caused by replication errors and endogenous DNA damage.

    Get PDF
    Mutational signatures are imprints of pathophysiological processes arising through tumorigenesis. We generated isogenic CRISPR-Cas9 knockouts (Δ) of 43 genes in human induced pluripotent stem cells, cultured them in the absence of added DNA damage, and performed whole-genome sequencing of 173 subclones. ΔOGG1, ΔUNG, ΔEXO1, ΔRNF168, ΔMLH1, ΔMSH2, ΔMSH6, ΔPMS1, and ΔPMS2 produced marked mutational signatures indicative of being critical mitigators of endogenous DNA modifications. Detailed analyses revealed mutational mechanistic insights, including how 8-oxo-dG elimination is sequence-context-specific while uracil clearance is sequence-context-independent. Mismatch repair (MMR) deficiency signatures are engendered by oxidative damage (C>A transversions), differential misincorporation by replicative polymerases (T>C and C>T transitions), and we propose a 'reverse template slippage' model for T>A transversions. ΔMLH1, ΔMSH6, and ΔMSH2 signatures were similar to each other but distinct from ΔPMS2. Finally, we developed a classifier, MMRDetect, where application to 7,695 WGS cancers showed enhanced detection of MMR-deficient tumors, with implications for responsiveness to immunotherapies

    Tooth Extraction Locally Stimulates Proliferation of Multiple Myeloma in a Patient with Mandibular Localizations

    No full text
    OBJECTIVES: Multiple myeloma (MM) is characterized by the occurrence of osteolytic lesions. MM treatment usually involves antiresorptive drugs (mainly bisphosphonates). CASE REPORT: A patient with an MM presented osteolytic lesions of the mandible. Extraction of teeth 45 and 46 was performed 5 years after the diagnosis of periodontitis. Four months later, osteonecrosis of the jaw (ONJ) was diagnosed at the extraction site. X-ray showed an extension of osteolytic lesions on the right side, close to the extraction site, without modification of the lesions on the left side. Two months later, a curettage was performed because of a painful bone sequestration. X-ray showed an extension of the osteolytic lesions on the right side. RESULTS: Histological analysis found a vascularized plasmacytoma of the soft tissues around the ONJ. Analysis of the bone showed mixed lesions with osteonecrotic areas and living bone resorbed by active osteoclasts surrounding a plasmacytoma. The surface area of the osteolytic foci has considerably increased only close to the extraction site. CONCLUSIONS: Tooth extraction triggered an ONJ associated with bisphosphonate treatment. However, it also seemed to induce a considerable proliferation of plasma cells at the extraction site; we hypothesize that it is due to the increase in bone remodeling related to the surgical trauma

    Cholesterol granuloma of the maxilla

    Get PDF
    International audienc

    A practical framework and online tool for mutational signature analyses show intertissue variation and driver dependencies

    No full text
    Mutational signatures are patterns of mutations that arise during tumorigenesis. We present an enhanced, practical framework for mutational signature analyses. Applying these methods to 3,107 whole-genome-sequenced (WGS) primary cancers of 21 organs reveals known signatures and nine previously undescribed rearrangement signatures. We highlight interorgan variability of signatures and present a way of visualizing that diversity, reinforcing our findings in an independent analysis of 3,096 WGS metastatic cancers. Signatures with a high level of genomic instability are dependent on TP53 dysregulation. We illustrate how uncertainty in mutational signature identification and assignment to samples affects tumor classification, reinforcing that using multiple orthogonal mutational signature data is not only beneficial, but is also essential for accurate tumor stratification. Finally, we present a reference web-based tool for cancer and experimentally generated mutational signatures, called Signal (https://signal.mutationalsignatures.com), that also supports performing mutational signature analyses

    Substitution mutational signatures in whole-genome-sequenced cancers in the UK population.

    No full text
    Whole-genome sequencing (WGS) permits comprehensive cancer genome analyses, revealing mutational signatures, imprints of DNA damage and repair processes that have arisen in each patient's cancer. We performed mutational signature analyses on 12,222 WGS tumor-normal matched pairs, from patients recruited via the UK National Health Service. We contrasted our results to two independent cancer WGS datasets, the International Cancer Genome Consortium (ICGC) and Hartwig Foundation, involving 18,640 WGS cancers in total. Our analyses add 40 single and 18 double substitution signatures to the current mutational signature tally. Critically, we show for each organ, that cancers have a limited number of 'common' signatures and a long tail of 'rare' signatures. We provide a practical solution for utilizing this concept of common versus rare signatures in future analyses

    Acute Pancreatitis

    No full text
    corecore