52,365 research outputs found

    Nuclear reactions induced by high-energy alpha particles

    Get PDF
    Experimental and theoretical studies of nuclear reactions induced by high energy protons and heavier ions are included. Fundamental data needed in the shielding, dosimetry, and radiobiology of high energy particles produced by accelerators were generated, along with data on cosmic ray interaction with matter. The mechanism of high energy nucleon-nucleus reactions is also examined, especially for light target nuclei of mass number comparable to that of biological tissue

    Non-Extensive Quantum Statistics with Particle - Hole Symmetry

    Full text link
    Based on Tsallis entropy and the corresponding deformed exponential function, generalized distribution functions for bosons and fermions have been used since a while. However, aiming at a non-extensive quantum statistics further requirements arise from the symmetric handling of particles and holes (excitations above and below the Fermi level). Naive replacements of the exponential function or cut and paste solutions fail to satisfy this symmetry and to be smooth at the Fermi level at the same time. We solve this problem by a general ansatz dividing the deformed exponential to odd and even terms and demonstrate that how earlier suggestions, like the kappa- and q-exponential behave in this respect

    Nonperturbative signatures in pair production for general elliptic polarization fields

    Full text link
    The momentum signatures in nonperturbative multiphoton pair production for general elliptic polarization electric fields are investigated by employing the real-time Dirac-Heisenberg-Wigner formalism. For a linearly polarized electric field we find that the positions of the nodes in momenta spectra of created pairs depend only on the electric field frequency. The polarization of external fields could not only change the node structures or even make the nodes disappear but also change the thresholds of pair production. The momentum signatures associated to the node positions in which the even-number-photon pair creation process is forbid could be used to distinguish the orbital angular momentum of created pairs on the momenta spectra. These distinguishable momentum signatures could be relevant for providing the output information of created particles and also the input information of ultrashort laser pulses.Comment: 8 pages, 4 figures, submitted to Europhysics Letter

    Accelerator measurement of the energy spectra of neutrons emitted in the interaction of 3-GeV protons with several elements

    Get PDF
    The application of time of flight techniques for determining the shapes of the energy spectra of neutrons between 20 and 400 MeV is discussed. The neutrons are emitted at 20, 34, and 90 degrees in the bombardment of targets by 3 GeV protons. The targets used are carbon, aluminum, cobalt, and platinum with cylindrical cross section. Targets being bombarded are located in the internal circulating beam of a particle accelerator

    SU(4) Spin-Orbital Two-Leg Ladder, Square and Triangle Lattices

    Get PDF
    Based on the generalized valence bond picture, a Schwinger boson mean field theory is applied to the symmetric SU(4) spin-orbital systems. For a two-leg SU(4) ladder, the ground state is a spin-orbital liquid with a finite energy gap, in good agreement with recent numerical calculations. In two-dimensional square and triangle lattices, the SU(4) Schwinger bosons condense at (\pi/2,\pi/2) and (\pi/3,\pi/3), respectively. Spin, orbital, and coupled spin-orbital static susceptibilities become singular at the wave vectors, twice of which the bose condensation arises at. It is also demonstrated that there are spin, orbital, and coupled spin-orbital long-range orderings in the ground state.Comment: 5 page

    Material and doping dependence of the nodal and anti-nodal dispersion renormalizations in single- and multi-layer cuprates

    Full text link
    In this paper we present a review of bosonic renormalization effects on electronic carriers observed from angle-resolved photoemission spectra in the cuprates. We specifically discuss the viewpoint that these renormalizations represent coupling of the electrons to the lattice, and review how the wide range of materials dependence, such as the number of CuO2_2 layers, and the doping dependence can be straightforwardly understood as arising due to novel electron-phonon coupling.Comment: 9 pages and 6 figures. Submitted as a review article for Advances in Condensed Matter Physic
    • …
    corecore