6 research outputs found

    Initial Results of the Geosynchronous Synthetic Thinned Array Radiometer (GeoSTAR)

    No full text
    An error budget is presented to meet 1 Kelvin radiometric accuracy in a geostationary atmospheric sounder with 50 km spatial resolution on the earth. The gain and phase errors are weighted by the magnitude of visibility versus antenna separation, and requirements range between approx.0.5% and 0.3 degrees of amplitude and phase, respectively, for the closest spacings at the center of the array, and about 5% and 3 degrees for the majority of the array. The latter requirement is met by our design without any special testing or stabilizations by reference signals. The former is met using an internal noise diode reference and by measuring the detailed antenna patterns on the antenna range. Biases and other additive errors in the raw visibility samples must be below about 2 mK on average, and this requirement is met by a phase shifting scheme applied to the local oscillator distribution. An outline of the data processing is presented, along with the first images from this system

    Prototype Development of a Geostationary Synthetic Thinned Aperture Radiometer, GeoSTAR

    No full text
    Preliminary details of a 2-D synthetic aperture radiometer prototype operating from 50 to 58 GHz will be presented. The instrument is being developed as a laboratory testbed, and the goal of this work is to demonstrate the technologies needed to do atmospheric soundings with high spatial resolution from Geostationary orbit. The concept is to deploy a large sparse aperture Y-array from a geostationary satellite, and to use aperture synthesis to obtain images of the earth without the need for a large mechanically scanned antenna. The laboratory prototype consists of a Y-array of 24 horn antennas, MMIC receivers, and a digital cross-correlation sub-system. System studies are discussed, including an error budget which has been derived from numerical simulations. The error budget defines key requirements, such as null offsets, phase calibration, and antenna pattern knowledge. Details of the instrument design are discussed in the context of these requirements

    Performance Evaluation of the Geostationary Synthetic Thinned Array Radiometer (GeoSTAR) Demonstrator Instrument

    No full text
    The design, error budget, and preliminary test results of a 50-56 GHz synthetic aperture radiometer demonstration system are presented. The instrument consists of a fixed 24-element array of correlation interferometers, and is capable of producing calibrated images with 0.8 degree spatial resolution within a 17 degree wide field of view. This system has been built to demonstrate performance and a design which can be scaled to a much larger geostationary earth imager. As a baseline, such a system would consist of about 300 elements, and would be capable of providing contiguous, full hemispheric images of the earth with 1 Kelvin of radiometric precision and 50 km spatial resolution

    Native and exotic Amphipoda and other Peracarida in the River Meuse: New assemblages emerge from a fast changing fauna

    No full text
    Samples issued from intensive sampling in the Netherlands (1992-2001) and from extensive sampling carried out in the context of international campaigns (1998, 2000 and 2001) were revisited. Additional samples from artificial substrates (1992-2003) and other techniques (various periods) were analysed. The combined data provide a global and dynamic view on the Peracarida community of the River Meuse, with the focus on the Amphipoda. Among the recent exotic species found, Crangonyx pseudogracilisis regressing, Dikerogammarus haemobaphesis restricted to the Condroz course of the river, Gammarus tigrinusis restricted to the lowlands and seems to regress, Jaera istriis restricted to the 'tidal' Meuse, Chelicorophium curvispinumis still migrating upstream into the Lorraine course without any strong impact on the other amphipod species. After a rapid expansion Dikerogammarus villosushas continued its upstream invasion between 1998 and 2002 at a rate of 30-40 km per year, but no further progression was noticed in 2003. Locally and temporarily the native species (Gammarus fossarum and G. pulex) and naturalized species (G. roeseliand Echinogammarus berilloni)mayhave been excluded by the most recent invaders (mainly D. villosus), but none of the native and naturalized species has disappeared completely. Therefore, the number of amphipod species found in the River Meuse has increased. Moreover, the native and naturalized species keep on dominating the tributaries from which the recent invaders seem to be excluded. A changing Peracarida community structure is observed along the course of the River Meuse: four native or naturalized species inhabit the upstream (Lorraine) course, three invasive species dominate in the middle reach (Ardenne-Condroz zone), one exotic species is housed in the Border Meuse and three or four invasive species dominate the assemblages in the lowlands. © Springer 2005.SCOPUS: re.jinfo:eu-repo/semantics/publishe
    corecore