2,018 research outputs found
Short-coherence length superconductivity in the Attractive Hubbard Model in three dimensions
We study the normal state and the superconducting transition in the
Attractive Hubbard Model in three dimensions, using self-consistent
diagrammatics. Our results for the self-consistent -matrix approximation are
consistent with 3D-XY power-law critical scaling and finite-size scaling. This
is in contrast to the exponential 2D-XY scaling the method was able to capture
in our previous 2D calculation. We find the 3D transition temperature at
quarter-filling and to be . The 3D critical regime is much
narrower than in 2D and the ratio of the mean-field transition to is
about 5 times smaller than in 2D. We also find that, for the parameters we
consider, the pseudogap regime in 3D (as in 2D) coincides with the critical
scaling regime.Comment: 4 pages, 5 figure
Transport anomalies in a simplified model for a heavy electron quantum critical point
We discuss the transport anomalies associated with the development of heavy
electrons out of a neutral spin fluid using the large-N treatment of the
Kondo-Heisenberg lattice model. At the phase transition in this model the spin
excitations suddenly acquire charge. The Higgs process by which this takes
place causes the constraint gauge field to loosely ``lock'' together with the
external, electromagnetic gauge field. From this perspective, the heavy fermion
phase is a Meissner phase in which the field representing the difference
between the electromagnetic and constraint gauge field, is excluded from the
material. We show that at the transition into the heavy fermion phase, both the
linear and the Hall conductivity jump together. However, the Drude weight of
the heavy electron fluid does not jump at the quantum critical point, but
instead grows linearly with the distance from the quantum critical point,
forming a kind of ``gossamer'' Fermi-liquid.Comment: 15 pages, 3 figures. Small change in references in v
Strong Correlations in Actinide Redox Reactions
Reduction-oxidation (redox) reactions of the redox couples An(VI)/An(V),
An(V)/An(IV), and An(IV)/An(III), where An is an element in the family of early
actinides (U, Np, and Pu), as well as Am(VI)/Am(V) and Am(V)/Am(III), are
modeled by combining density functional theory with a generalized Anderson
impurity model that accounts for the strong correlations between the 5f
electrons. Diagonalization of the Anderson impurity model yields improved
estimates for the redox potentials and the propensity of the actinide complexes
to disproportionate.Comment: 17 pages, 10 figure, 3 tables. Corrections and clarifications; this
version has been accepted for publication in The Journal of Chemical Physic
Investigations into the Sarcomeric Protein and Ca2+-Regulation Abnormalities Underlying Hypertrophic Cardiomyopathy in Cats (Felix catus).
Hypertrophic cardiomyopathy (HCM) is the most common single gene inherited cardiomyopathy. In cats (Felix catus) HCM is even more prevalent and affects 16% of the outbred population and up to 26% in pedigree breeds such as Maine Coon and Ragdoll. Homozygous MYBPC3 mutations have been identified in these breeds but the mutations in other cats are unknown. At the clinical and physiological level feline HCM is closely analogous to human HCM but little is known about the primary causative mechanism. Most identified HCM causing mutations are in the genes coding for proteins of the sarcomere. We therefore investigated contractile and regulatory proteins in left ventricular tissue from 25 cats, 18 diagnosed with HCM, including a Ragdoll cat with a homozygous MYBPC3 R820W, and 7 non-HCM cats in comparison with human HCM (from septal myectomy) and donor heart tissue. Myofibrillar protein expression was normal except that we observed 20–44% MyBP-C haploinsufficiency in 5 of the HCM cats. Troponin extracted from 8 HCM and 5 non-HCM cat hearts was incorporated into thin filaments and studied by in vitro motility assay. All HCM cat hearts had a higher (2.06 ± 0.13 fold) Ca2+-sensitivity than non-HCM cats and, in all the HCM cats, Ca2+-sensitivity was not modulated by troponin I phosphorylation. We were able to restore modulation of Ca2+-sensitivity by replacing troponin T with wild-type protein or by adding 100 μM Epigallocatechin 3-gallate (EGCG). These fundamental regulatory characteristics closely mimic those seen in human HCM indicating a common molecular mechanism that is independent of the causative mutation. Thus, the HCM cat is a potentially useful large animal model
Astrophysical Fluid Dynamics via Direct Statistical Simulation
In this paper we introduce the concept of Direct Statistical Simulation (DSS)
for astrophysical flows. This technique may be appropriate for problems in
astrophysical fluids where the instantaneous dynamics of the flows are of
secondary importance to their statistical properties. We give examples of such
problems including mixing and transport in planets, stars and disks. The method
is described for a general set of evolution equations, before we consider the
specific case of a spectral method optimised for problems on a spherical
surface. The method is illustrated for the simplest non-trivial example of
hydrodynamics and MHD on a rotating spherical surface. We then discuss possible
extensions of the method both in terms of computational methods and the range
of astrophysical problems that are of interest.Comment: 26 pages, 11 figures, added clarifying remarks and references, and
corrected typos. This version is accepted for publication in The
Astrophysical Journa
Staggered Flux Phase in a Model of Strongly Correlated Electrons
We present numerical evidence for the existence of a staggered flux (SF)
phase in the half-filled two-leg t-U-V-J ladder, with true long-range order in
the counter-circulating currents. The density-matrix renormalization-group
(DMRG) / finite-size scaling approach, generalized to describe complex-valued
Hamiltonians and wavefunctions, is employed. The SF phase exhibits robust
currents at intermediate values of the interaction strength.Comment: Version to appear in Phys. Rev. Let
- …