30 research outputs found

    Late Quaternary Distribution of the Cycladophora davisiana Radiolarian Species: Reflection of Possible Ventilation of the North Pacific Intermediate Water during the Last Glacial Maximum

    Get PDF
    A comparison of micropaleontological data on the distribution of the Cycladophora davisiana radiolarian species in the surface sediment layer and the Late Quaternary sediments from the Subarctic Pacific and Far East marginal seas allowed conclusions concerning the possible conditions and occurrence of intermediate waters during the last glacial maximum. We used the modern data on the C. davisiana species, which is a micropaleontological indicator of the cold oxygen-rich upper intermediate water mass, which is now forming only in the Sea of Okhotsk. The high amount of C. davisiana in sediments of the last glacial maximum may point to the possible formation and expansion of the ventilated intermediate water in the most part of the Subarctic paleo-Pacific: the Bering Sea, the Sea of Okhotsk, within the NW Gyre, and in the Gulf of Alaska

    Investigation of cascade showers in the Cherenkov water detector NEVOD

    Get PDF
    A technique for the reconstruction of cascade profiles by means of Cherenkov radiation in the water of the NEVOD detector is discussed. NEVOD is equipped with a dense spatial lattice of optical modules. The analyzed cascades have been generated either along near-horizontal muons (zenith angles between 85 and 90°), which's tracks are reconstructed by means of the tracking detector DECOR, or by muons with unknown tracks over a wider zenith angle range of 50-90°. Mean cascade profiles and energy spectra of cascades measured during the experimental series of about 7950 hours of 'live time' are presented

    (Table 2) Radiolaria species in nodule samples from the Clarion-Clipperton province, Pacific Ocean

    No full text
    Radiolaria were studied in 19 manganese nodules raised from the bottom. The nodules occurred mainly on the surface of thin Quaternary sediments covering Tertiary deposits of various ages (Middle Eocene to Early Miocene). Radiolaria in nodule cores and in inner and surface layers were studied. We found 85 radiolaria species and groups of species. Usually 1-4 to 6-19 radiolaria species were detected in each of the samples. Species belonging to Middle Eocene, Late Miocene to Early Oligocene, and Oligocene to Early Miocene were found. Rare Neogene species were revealed only in fractured surface layers. Age of the nodules is mainly Oligocene. Seismic waves cause sediment vibration, loosening disintegration, and removal of suspension by bottom currents. The vibration effect causes ancient nodules to float up to the surface of Quaternary sediment. This hypothesis suggests the reason for characteristics of the Clarion-Clipperton zone: regional stratigraphic hiatus, accumulation of residual fields of nodules, and the ''floating up'' of nodules to the surface of the Quaternary sediments

    Microfossils detected in a block of ancient dense clay coated with a ferromanganese crust, Clarion-Clipperton Province, East Equatorial Pacific

    No full text
    The area in study is characterized by a regional stratigraphic hiatus from Early Miocene to Quaternary. Deposits from Late Eocene to Early Miocene occur on the bottom surface or under a thin sedimentary cover. Ferromanganese nodules, mostly of Oligocene age, formed on surface layers of Tertiary or Quaternary sediments. A detailed micropaleontological study of a block of dense ancient clay coated with a ferromanganese crust was carried out. Composition of found radiolarian and diatomaceous complexes proved that the crust formed in Quaternary on an eroded surface of Late Oligocene clay. In Quaternary Neogene sediments were eroded and washed away by bottom currents. It is likely that the erosion began 0.9-0.7 Ma at the beginning of the "Glacial Pleistocene". The erosion could be initiated by loosening and resuspension of surface sediments resulting from seismic activity generated by strong earthquakes in the Central America subduction zone. The same vibration maintained residual nodules at the seafloor surface. Thus, for the area in study a common reason and a common Quaternary interval for formation of the following features is supposed: a regional stratigraphic hiatus, formation of residual nodule fields, and position of ancient nodules on the surface of Quaternary sediments

    Flux variations and vertical distributions of siliceous Rhizaria (Radiolaria and Phaeodaria) in the western Arctic Ocean: indices of environmental changes

    No full text
    The vertical distribution of radiolarians was investigated using a vertical multiple plankton sampler (100–0, 250–100, 500–250, and 1000–500 m water depths, 62 μm mesh size) at the Northwind Abyssal Plain and southwestern Canada Basin in September 2013. To investigate seasonal variations in the flux of radiolarians in relation to sea ice and water masses, a time-series sediment trap system was moored at Station NAP (75°00´ N, 162°00´ W; bottom depth 1975 m) in the western Arctic Ocean during October 2010–September 2012. The radiolarian flux was comparable to that in the North Pacific Ocean. <i>Amphimelissa setosa</i> was dominant during the season with open water as well as at the beginning and end of the seasons with sea-ice cover. During the sea-ice-cover season, however, oligotrophic and cold-water-tolerant actinommids were dominant, productivity of Radiolaria was lower, and species diversity was greater. These suggest that the dynamics of sea ice are a major factor affecting the productivity, distribution, and composition of the radiolarian fauna
    corecore