8,628 research outputs found

    Thermodynamic equilibrium and its stability for Microcanonical systems described by the Sharma-Taneja-Mittal entropy

    Full text link
    It is generally assumed that the thermodynamic stability of equilibrium state is reflected by the concavity of entropy. We inquire, in the microcanonical picture, on the validity of this statement for systems described by the bi-parametric entropy SÎș,rS_{_{\kappa, r}} of Sharma-Taneja-Mittal. We analyze the ``composability'' rule for two statistically independent systems, A and B, described by the entropy SÎș,rS_{_{\kappa, r}} with the same set of the deformed parameters. It is shown that, in spite of the concavity of the entropy, the ``composability'' rule modifies the thermodynamic stability conditions of the equilibrium state. Depending on the values assumed by the deformed parameters, when the relation SÎș,r(AâˆȘB)>SÎș,r(A)+SÎș,r(B)S_{_{\kappa, r}}({\rm A}\cup{\rm B})> S_{_{\kappa, r}}({\rm A})+S_{_{\kappa, r}}({\rm B}) holds (super-additive systems), the concavity conditions does imply the thermodynamics stability. Otherwise, when the relation SÎș,r(AâˆȘB)<SÎș,r(A)+SÎș,r(B)S_{_{\kappa, r}}({\rm A}\cup{\rm B})<S_{_{\kappa, r}}({\rm A})+S_{_{\kappa, r}}({\rm B}) holds (sub-additive systems), the concavity conditions does not imply the thermodynamical stability of the equilibrium state.Comment: 13 pages, two columns, 1 figure, RevTex4, version accepted on PR

    Out-Of-Focus Holography at the Green Bank Telescope

    Get PDF
    We describe phase-retrieval holography measurements of the 100-m diameter Green Bank Telescope using astronomical sources and an astronomical receiver operating at a wavelength of 7 mm. We use the technique with parameterization of the aperture in terms of Zernike polynomials and employing a large defocus, as described by Nikolic, Hills & Richer (2006). Individual measurements take around 25 minutes and from the resulting beam maps (which have peak signal to noise ratios of 200:1) we show that it is possible to produce low-resolution maps of the wavefront errors with accuracy around a hundredth of a wavelength. Using such measurements over a wide range of elevations, we have calculated a model for the wavefront-errors due to the uncompensated gravitational deformation of the telescope. This model produces a significant improvement at low elevations, where these errors are expected to be the largest; after applying the model, the aperture efficiency is largely independent of elevation. We have also demonstrated that the technique can be used to measure and largely correct for thermal deformations of the antenna, which often exceed the uncompensated gravitational deformations during daytime observing. We conclude that the aberrations induced by gravity and thermal effects are large-scale and the technique used here is particularly suitable for measuring such deformations in large millimetre wave radio telescopes.Comment: 10 pages, 7 figures (accepted by Astronomy & Astrophysics

    Length scale dependence of dynamical heterogeneity in a colloidal fractal gel

    Full text link
    We use time-resolved dynamic light scattering to investigate the slow dynamics of a colloidal gel. The final decay of the average intensity autocorrelation function is well described by g_2(q,τ)−1∌exp⁥[−(τ/τ_f)p]g\_2(q,\tau)-1 \sim \exp[-(\tau/\tau\_\mathrm{f})^p], with τ_f∌q−1\tau\_\mathrm{f} \sim q^{-1} and pp decreasing from 1.5 to 1 with increasing qq. We show that the dynamics is not due to a continuous ballistic process, as proposed in previous works, but rather to rare, intermittent rearrangements. We quantify the dynamical fluctuations resulting from intermittency by means of the variance χ(τ,q)\chi(\tau,q) of the instantaneous autocorrelation function, the analogous of the dynamical susceptibility χ_4\chi\_4 studied in glass formers. The amplitude of χ\chi is found to grow linearly with qq. We propose a simple --yet general-- model of intermittent dynamics that accounts for the qq dependence of both the average correlation functions and χ\chi.Comment: Revised and improved, to appear in Europhys. Let

    Superalloy for high-temperature hydrogen environmental applications

    Get PDF
    A nickel-based superalloy is provided which is resistant to deterioration in hydrogen at high operating temperatures and pressures, and which thus can be used in hydrogen-fueled spacecraft such as the Space Shuttle. The superalloy is characterized by a two-phase microstructure and consists of a gamma-prime precipitated phase in a gamma matrix. The gamma matrix phase is a primary solid solution and the gamma precipitated phase will be an intermetallic compound of the type A.sub.3 B, such as nickel aluminide or titanide. Both phases are coherent, ordered, and compatible, and thus will retain most of their strength at elevated temperatures. The alloy consists essentially of (by weight): Ni 50-60%, Cr 10-20%, Al 2-6%, Co 2-5%, Ti 3-8%, W 5-12%, Mo 5-10%, Nb 1-3%, wherein the ratio W/MO is approximately equal to 1, and Ti/Al ranges from about 1 to about 2

    Holevo's bound from a general quantum fluctuation theorem

    Full text link
    We give a novel derivation of Holevo's bound using an important result from nonequilibrium statistical physics, the fluctuation theorem. To do so we develop a general formalism of quantum fluctuation theorems for two-time measurements, which explicitly accounts for the back action of quantum measurements as well as possibly non-unitary time evolution. For a specific choice of observables this fluctuation theorem yields a measurement-dependent correction to the Holevo bound, leading to a tighter inequality. We conclude by analyzing equality conditions for the improved bound.Comment: 5 page

    OH (1720 MHz) Masers: A Multiwavelength Study of the Interaction between the W51C Supernova Remnant and the W51B Star Forming Region

    Full text link
    We present a comprehensive view of the W51B HII region complex and the W51C supernova remnant (SNR) using new radio observations from the VLA, VLBA, MERLIN, JCMT, and CSO along with archival data from Spitzer, ROSAT, ASCA, and Chandra. Our VLA data include the first 400 cm (74 MHz) continuum image of W51 at high resolution (88 arcsec). The 400 cm image shows non-thermal emission surrounding the G49.2-0.3 HII region, and a compact source of non-thermal emission (W51B_NT) coincident with the previously-identified OH (1720 MHz) maser spots, non-thermal 21 and 90 cm emission, and a hard X-ray source. W51B_NT falls within the region of high likelihood for the position of TeV gamma-ray emission. Using the VLBA three OH (1720 MHz) maser spots are detected in the vicinity of W51B_NT with sizes of 60 to 300 AU and Zeeman effect magnetic field strengths of 1.5 to 2.2 mG. The multiwavelength data demonstrate that the northern end of the W51B HII region complex has been partly enveloped by the advancing W51C SNR and this interaction explains the presence of W51B_NT and the OH masers. This interaction also appears in the thermal molecular gas which partially encircles W51B_NT and exhibits narrow pre-shock (DeltaV 5 km/s) and broad post-shock (DeltaV 20 km/s) velocity components. RADEX radiative transfer modeling of these two components yield physical conditions consistent with the passage of a non-dissociative C-type shock. Confirmation of the W51B/W51C interaction provides additional evidence in favor of this region being one of the best candidates for hadronic particle acceleration known thus far.Comment: Accepted to Ap

    Asteroid 1986 DA: Radar evidence for a metallic composition

    Get PDF
    Radar observations of the near-Earth asteroid 1986 DA were carried out at the Arecibo Observatory in April 1986, two months after its discovery. Radar results are consistent with the hypothesis that 1986 HA is a piece of NiFe metal derived from the interior of a much larger object that melted, differentiated, cooled and subsequently was disrupted in a catastrophic collision. This 2-km asteroid might be (or have been part of) the parent body of some iron meteorites. Or 1986 DA might share the parentage and/or part of the dynamical history of some meteorites without ever having contributed any of its own ejecta to our meteorite sample. Analysis of the samples returned from 1986 DA might ultimately involve economic considerations. Meteoritic metal is mostly iron with about 8 percent nickel, but also contains substantial concentrations of precious and strategic metals, including approx. 1 ppm of gold and approx. 10 ppm of platinum group elements. If these abundances apply to 1986 DA, it contains some 10(exp 16) g of iron, 10 (exp 15) g of nickel, 10(exp 11) g of platinum group metals, and 10(exp 10) g of gold
    • 

    corecore